Abstract

A nonlinear correlation algorithm is proposed for estimating the motion of objects from an image pair. This algorithm requires no a priori information on the number, size, or shape of the moving objects and does not require feature extraction or segmentation of either image. The algorithm directly yields information on the number of moving objects, the motion of the objects, and the size of the objects. Additional processing can be performed to yield the centroid of the objects in either frame. The utility of the resulting algorithm is demonstrated by application to a pair of example image sequences.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detecting and tracking moving objects in long-distance imaging through turbulent medium

Eli Chen, Oren Haik, and Yitzhak Yitzhaky
Appl. Opt. 53(6) 1181-1190 (2014)

Space debris detection in optical image sequences

Jiangbo Xi, Desheng Wen, Okan K. Ersoy, Hongwei Yi, Dalei Yao, Zongxi Song, and Shaobo Xi
Appl. Opt. 55(28) 7929-7940 (2016)

Optical Fourier processor and point-diffraction interferometer for moving-object trajectory estimation

Pierre M. Lane and Michael Cada
Appl. Opt. 38(20) 4306-4315 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription