Abstract

We contribute to the study of the optical properties of high-permittivity nanostructures deposited on surfaces. We present what we believe is a new computational technique derived from the coupled-dipole approximation (CDA), which can accommodate high-permittivity scatterers. The discretized CDA equations are reformulated by use of the sampling theory to overcome different sources of inaccuracy that arise for high-permittivity scatterers. We first give the nonretarded filtered surface Green’s tensor used in the new scheme. We then assess the accuracy of the technique by comparing it with the standard CDA approach and show that it can accurately handle scatterers with a large permittivity.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription