Abstract

We describe the fabrication of large areas (4 cm2) of metallic structures or aperture elements that have ∼100–350-nm linewidths and act as frequency-selective surfaces. These structures are fabricated with a type of soft lithography—near-field contact-mode photolithography—that uses a thin elastomeric mask having topography on its surface and is in conformal contact with a layer of photoresist. The mask acts as an optical element to create minima in the intensity of light delivered to the photoresist. Depending on the type of photoresist used, lines of, or trenches in, photoresist are formed on the substrate by exposure, development, and lift-off. These surfaces act as bandpass or bandgap filters in the infrared.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).
  2. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane, L. B. Whitbourn, “Annular-slot arrays as far-infrared bandpass filters,” Opt. Lett. 14, 931–933 (1989).
    [CrossRef] [PubMed]
  3. C. M. Rhoades, E. K. Damon, B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21, 2814–2816 (1982).
    [CrossRef]
  4. I. Puscasu, D. Spencer, G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39, 1570–1574 (2000).
    [CrossRef]
  5. M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
    [CrossRef]
  6. K. J. Kogler, R. G. Pastor, “Infrared filters fabricated from submicron loop antenna arrays,” Appl. Opt. 27, 18–19 (1988).
    [CrossRef] [PubMed]
  7. Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
    [CrossRef]
  8. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
    [CrossRef]
  9. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
    [CrossRef]
  10. J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
    [CrossRef]
  11. K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
    [CrossRef]
  12. J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
    [CrossRef]
  13. A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
    [CrossRef]
  14. J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
    [CrossRef]
  15. J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
    [CrossRef]
  16. J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
    [CrossRef]
  17. H. Schmid, B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33, 3042–3049 (2000).
    [CrossRef]
  18. Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
    [CrossRef]

2001

J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
[CrossRef]

2000

1999

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

1998

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
[CrossRef]

1997

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

1996

Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
[CrossRef]

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

1989

1988

1982

Aizenberg, J.

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

Black, A. J.

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
[CrossRef]

Boreman, G. D.

Breen, T. L.

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

Damon, E. K.

Dawes, D. H.

Horne, W. E.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Jackman, R. J.

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Kogler, K. J.

Krug, P. A.

Love, J. C.

J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
[CrossRef]

Macfarlane, J. C.

McPhedran, R. C.

Michel, B.

H. Schmid, B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33, 3042–3049 (2000).
[CrossRef]

Morgan, M. D.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Munk, B. A.

Pastor, R. G.

Paul, K. E.

J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
[CrossRef]

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Pendharkar, S. V.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Puscasu, I.

Qin, D.

Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
[CrossRef]

Rhoades, C. M.

Rogers, J. A.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Schmid, H.

H. Schmid, B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33, 3042–3049 (2000).
[CrossRef]

Spencer, D.

Sundaram, V.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Tiberio, R.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Whitbourn, L. B.

Whitesides, G. M.

J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
[CrossRef]

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,” Appl. Opt. 37, 2145–2152 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
[CrossRef]

Wolfe, J. C.

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Wright, W.

Wu, T. K.

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

Xia, Y.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
[CrossRef]

Adv. Mater.

J. C. Love, K. E. Paul, G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13, 604–607 (2001).
[CrossRef]

Y. Xia, D. Qin, G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features,” Adv. Mater. 8, 1015–1017 (1996).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, “Maskless lithography: embossed photoresist as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Imaging the irradiance distribution in the optical near field,” Appl. Phys. Lett. 71, 3773–3775 (1997).
[CrossRef]

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field,” Appl. Phys. Lett. 70, 2658–2660 (1997).
[CrossRef]

Chem. Rev.

Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

J. Am. Chem. Soc.

A. J. Black, K. E. Paul, J. Aizenberg, G. M. Whitesides, “Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum,” J. Am. Chem. Soc. 121, 8356–8365 (1999).
[CrossRef]

J. Vac. Sci. Technol. B

J. A. Rogers, K. E. Paul, R. J. Jackman, G. M. Whitesides, “Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask,” J. Vac. Sci. Technol. B 26, 59–68 (1998).
[CrossRef]

M. D. Morgan, W. E. Horne, V. Sundaram, J. C. Wolfe, S. V. Pendharkar, R. Tiberio, “Application of optical filters fabricated by masked ion beam lithography,” J. Vac. Sci. Technol. B 14, 3903–3906 (1996).
[CrossRef]

Macromolecules

H. Schmid, B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33, 3042–3049 (2000).
[CrossRef]

Nature (London)

J. Aizenberg, A. J. Black, G. M. Whitesides, “Controlling local disorder in self-assembled monolayers by patterning the topology of their metallic supports,” Nature (London) 394, 868–871 (1998).
[CrossRef]

Opt. Lett.

Other

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the procedure for fabricating mid-infrared FSS by near-field contact-mode photolithography.

Fig. 2
Fig. 2

Top, scanning electron micrographs of rings with a diameter of ∼850 nm. The light regions are aluminum and the dark regions are CaF2. These features occur uniformly over the 1-in.- (2.54-cm-) diameter window. The width of the trench in the aluminum is approximately 100 nm. Bottom, infrared transmission curve obtained for the array shown above. The solid curve shows the spectrum of the CaF2 background and the dotted curve shows the average curve for the sample with a transmission peak at 3.18 µm.

Fig. 3
Fig. 3

Top, scanning electron micrographs of rings with a diameter of 1.85 µm. The light areas of the surface are aluminum and the dark areas are calcium fluoride. Bottom, infrared transmission curve for the FSS. The solid curve shows the transmission of the CaF2 background and the dotted curve shows the average transmission curve for the sample with a peak at 7.07 µm.

Fig. 4
Fig. 4

Top, scanning electron micrograph of a bandgap filter of aluminum rings fabricated on optical-grade silicon. The rings have a diameter of 2.15 µm and a linewidth of ∼350 nm. Bottom, the solid curve shows the transmission of the silicon background and the dotted curve shows the average transmission curve for the FSS shown above. The transmission band occurs at 12.9 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λrneffπD.
neff=ε1+ε2/21/2.

Metrics