Abstract

We report results from a demonstration of a midwave-infrared, nonscanning, high-speed imaging spectrometer capable of simultaneously recording spatial and spectral data from a rapidly varying target scene. We demonstrated high-speed spectral imaging by collecting spectral and spatial snapshots of blackbody targets and combustion products. The instrument is based on computed tomography concepts and operates in a midwave-infrared band of 3.0–5.0 µm. We record raw images at a frame rate of 60 frames/s, using a 512 × 512 InSb focal-plane array. Reconstructed object cube estimates were sampled at 46 × 46 × 21 (x, y, λ) elements, or 0.1-µm spectral sampling. Reconstructions of several objects are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Descour, “Non-scanning imaging spectrometry,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).
  2. M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817–4826 (1995).
    [CrossRef] [PubMed]
  3. C. Coleman, “Computer generated holograms for free-space optical interconnects,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1998), Chap. 3.
  4. Veeco Metrology Group, 2650 E. Elvira Rd., Tucson, Ariz. 85706.
  5. C. E. Volin, B. K. Ford, M. R. Descour, J. P. Garcia, D. W. Wilson, P. D. Maker, G. H. Bearman, “High-speed spectral imager for imaging transient fluorescence phenomena,” Appl. Opt. 37, 8112–8119 (1998).
    [CrossRef]
  6. Amorphous Materials Inc., 3130 Benton, Garland, Tex. 75042.
  7. SBRC infrared wall chart, Santa Barbara Research Center, 75 Coromar Dr., Goleta, Calif. 93117 (1984).
  8. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
    [CrossRef]
  9. C. E. Volin, “Portable snapshot infrared imaging spectrometer,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000), Chap. 4, pp. 66–81.

1998

1995

1982

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
[CrossRef]

Bearman, G. H.

Coleman, C.

C. Coleman, “Computer generated holograms for free-space optical interconnects,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1998), Chap. 3.

Dereniak, E. L.

Descour, M. R.

Ford, B. K.

Garcia, J. P.

Maker, P. D.

Shepp, L. A.

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
[CrossRef]

Vardi, Y.

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
[CrossRef]

Volin, C. E.

C. E. Volin, B. K. Ford, M. R. Descour, J. P. Garcia, D. W. Wilson, P. D. Maker, G. H. Bearman, “High-speed spectral imager for imaging transient fluorescence phenomena,” Appl. Opt. 37, 8112–8119 (1998).
[CrossRef]

C. E. Volin, “Portable snapshot infrared imaging spectrometer,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000), Chap. 4, pp. 66–81.

Wilson, D. W.

Appl. Opt.

IEEE Trans. Med. Imaging

L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
[CrossRef]

Other

C. E. Volin, “Portable snapshot infrared imaging spectrometer,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 2000), Chap. 4, pp. 66–81.

M. R. Descour, “Non-scanning imaging spectrometry,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

Amorphous Materials Inc., 3130 Benton, Garland, Tex. 75042.

SBRC infrared wall chart, Santa Barbara Research Center, 75 Coromar Dr., Goleta, Calif. 93117 (1984).

C. Coleman, “Computer generated holograms for free-space optical interconnects,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1998), Chap. 3.

Veeco Metrology Group, 2650 E. Elvira Rd., Tucson, Ariz. 85706.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Projections of the object cube. Spectral information along the vertical axis of the object cube is projected along the radial coordinate of the focal plane and multiplexed with spatial information.

Fig. 2
Fig. 2

Top, optical schematic of the CTIS including the chief ray; bottom, MWIR CTIS instrument.

Fig. 3
Fig. 3

MWIR CTIS images: (a) raw image of a narrow-band point source; (b) raw image of a uniform broadband source.

Fig. 4
Fig. 4

Topography measurement of a segment of the fabricated uniform-irradiance CGH.

Fig. 5
Fig. 5

Calculated diffraction patterns at five wavelengths for the 5 × 5 uniform-irradiance CGH.

Fig. 6
Fig. 6

Calculated versus measured merit function for the uniform-irradiance CGH.

Fig. 7
Fig. 7

MWIR CTIS calibration setup pictured with the CTIS: A, blackbody source; B, lens; C, monochromator; D, fiber-optic waveguide input face; E, fiber imaging lens; F, CTIS field stop; G, chopper wheel; H, HgCdTe reference detector; I, chopper controller and lock-in amplifier. The fiber waveguide output is positioned for the reference detector measurement.

Fig. 8
Fig. 8

Reference detector measurement for the MWIR CTIS calibration. Gray bars indicate the CO2 absorption band (4.2–4.3 µm) and the fiber waveguide absorption band (4.5–4.8 µm).

Fig. 9
Fig. 9

MWIR CTIS calibration images at three selected wavelengths.

Fig. 10
Fig. 10

Raw image of the broadband filter target.

Fig. 11
Fig. 11

Spectral images from a reconstruction of the broadband filter target.

Fig. 12
Fig. 12

Small-aperture 400 °C blackbody reconstruction results: (a) raw image; (b) reconstructed spectral image at 4.0 µm; (c) spectrum plotted from the brightest spatial position in the spectral image in which the curve is proportional to the 400 °C blackbody photon emission profile and gray bars indicate regions of great discrepancy, as described in the text.

Fig. 13
Fig. 13

Diagram depicting the arrangement of the match and flame in the burning-match target. FOV, field of view.

Fig. 14
Fig. 14

Spectral images from the reconstruction of the burning-match target. The diagram in Fig. 13 indicates the arrangement of the match and flame.

Fig. 15
Fig. 15

Spectra from selected positions in the burning-match reconstruction.

Metrics