Abstract

We measured spectral extinction in situ for aerosolized Bacillus subtilis var. niger endospores using Fourier-transform infrared spectroscopy from 3.0 to 13.0 µm. Corresponding aerosol size distributions were measured with a commercially available elastic light-scattering probe and verified by direct particle capture and subsequent counting by video microscopy. Aerosol mass density was monitored simultaneously with conventional dosimetry and was used to mass normalize the measured spectral extinction. Mie theory calculations based on measured distributions and available complex indices of refraction agreed well. We also present resultant Mie calculations for the absorption, total scattering, and backscatter. For comparison, measured spectral extinction for three common environmental aerosols is also presented, i.e., for water fog, diesel soot, and Arizona road dust.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription