Abstract

Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities (>1.7 nm ≈ 30 cm-1) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200–700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response (∼30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Ouyang, P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
    [CrossRef] [PubMed]
  2. S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]
  3. E. R. Furlong, “Diode-laser absorption spectroscopy applied for the active control of combustion,” Ph.D. dissertation, Thermosciences Division Report 116 (Mechanical Engineering Department, Stanford University, Stanford, Calif., 1998).
  4. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
    [CrossRef]
  5. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
    [CrossRef]
  6. J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).
  7. L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
    [CrossRef] [PubMed]
  8. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  9. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  10. L. C. Philippe, R. K. Hanson, “Laser-diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  11. R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
    [CrossRef]
  12. T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
    [CrossRef]
  13. P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999).
    [CrossRef]
  14. J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
    [CrossRef]
  15. H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. Gauggel, F. Monti di Sopra, “Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection,” Appl. Opt. 39, 2475–2479 (2000).
    [CrossRef]
  16. J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
    [CrossRef]
  17. H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
    [CrossRef]
  18. S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
    [CrossRef]
  19. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994).
    [CrossRef] [PubMed]
  20. D. S. Baer, R. K. Hanson, M. E. Newfield, N. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  21. M. P. Arroyo, R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  22. J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode-lasers,” Appl. Opt. 34, 2787–2801 (1995).
    [CrossRef] [PubMed]
  23. C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
    [CrossRef]

2001 (1)

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

2000 (4)

H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. Gauggel, F. Monti di Sopra, “Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection,” Appl. Opt. 39, 2475–2479 (2000).
[CrossRef]

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

1999 (3)

J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999).
[CrossRef]

1998 (4)

C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
[CrossRef]

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
[CrossRef]

1995 (1)

1994 (2)

1993 (2)

1992 (1)

T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

1989 (1)

1987 (1)

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1981 (1)

S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Arroyo, M. P.

Baer, D. S.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

Benedetti, R.

R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
[CrossRef]

Braun, H.

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

Brown, L. R.

L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Connolly, J. C.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Cusano, D. M.

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Drier, T.

T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Eaton, A. R.

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Frey, S. F.

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

Furlong, E. R.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

E. R. Furlong, “Diode-laser absorption spectroscopy applied for the active control of combustion,” Ph.D. dissertation, Thermosciences Division Report 116 (Mechanical Engineering Department, Stanford University, Stanford, Calif., 1998).

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Garbuzov, D. Z.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Gauggel, H.

Giulietti, K.

R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gopaul, N.

Greenberg, P. S.

Gulden, K.

Hanson, R. K.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

M. P. Arroyo, R. K. Hanson, “Absorption-measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser-diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Hess, M.

Hoeren, A.

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

Hovel, R.

Jeffries, J. B.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kane, D. J.

J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode-lasers,” Appl. Opt. 34, 2787–2801 (1995).
[CrossRef] [PubMed]

Kenney, C. S.

C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
[CrossRef]

Langlois, S.

Laub, A. J.

C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
[CrossRef]

Macko, P.

P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999).
[CrossRef]

Maiorov, M.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mihalcea, R. M.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Monti di Sopra, F.

Moser, M.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Newfield, M. E.

Ouyang, X.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pfost, H.

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

Philippe, L. C.

Plesniak, M. W.

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

Plymate, C.

L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

Reese, M. S.

C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Rosa-Clot, M.

R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sanders, S. T.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

Schiff, G.

T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Schneiders, T.

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Scully, B.

J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).

Seitzman, J. M.

J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).

Silver, J. A.

J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

J. A. Silver, D. J. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode-lasers,” Appl. Opt. 34, 2787–2801 (1995).
[CrossRef] [PubMed]

Sojka, P. E.

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

Tamma, R.

J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Varghese, P. L.

Veis, P.

P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999).
[CrossRef]

Vortmeyer, K.

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

Wang, J.

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Zappe, H. P.

AIAA J. (1)

E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (2)

J. Wang, S. T. Sanders, J. B. Jeffries, R. K. Hanson, “Oxygen measurements at high pressures using vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865–872 (2001).
[CrossRef]

T. Drier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Combust. Sci. Technol. (1)

S. M. Schoenung, R. K. Hanson, “CO and temperature-measurements in a flat flame by laser-absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Energy Convers. Manage. (1)

H. Braun, A. Hoeren, T. Schneiders, K. Vortmeyer, H. Pfost, “Measurement of the mixing quality in premix combustors,” Energy Convers. Manage. 39, 1991–1999 (1998).
[CrossRef]

J. Mol. Spectrosc. (2)

L. R. Brown, C. Plymate, “Experimental line parameters of the oxygen A band at 760 nm,” J. Mol. Spectrosc. 199, 166–179 (2000).
[CrossRef] [PubMed]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Phys. D (1)

P. Macko, P. Veis, “Time resolved O2(b1Σg+) rotational temperature measurements in a low-pressure oxygen pulsed discharge. Simple and quick method for temperature determination,” J. Phys. D 32, 246–250 (1999).
[CrossRef]

J. Propul. Power (1)

S. F. Frey, A. R. Eaton, D. M. Cusano, M. W. Plesniak, P. E. Sojka, “Effect of inlet turbulence and premixer length on fuel distribution in swirling gas-turbine premixer,” J. Propul. Power 16, 837–844 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Meas. Sci. Technol. (2)

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

J. A. Silver, D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol. 10, 845–852 (1999).
[CrossRef]

Opt. Commun. (1)

R. Benedetti, K. Giulietti, M. Rosa-Clot, “Line shape analysis of O2 in air as a way to measure temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 154, 47–53 (1998).
[CrossRef]

Opt. Lett. (1)

SIAM J. Matrix Anal. Appl. (1)

C. S. Kenney, A. J. Laub, M. S. Reese, “Statistical condition estimation for linear least squares,” SIAM J. Matrix Anal. Appl. 19, 906–923 (1998).
[CrossRef]

Other (2)

J. M. Seitzman, R. Tamma, B. Scully, “Broadband infrared sensor for active control of high pressure combustors,” paper AIAA-98-0401, presented at the Thirty-Sixth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 12–15 Jan. 1998 (American Institute of Aeronautics and Astronautics, New York, 1998).

E. R. Furlong, “Diode-laser absorption spectroscopy applied for the active control of combustion,” Ph.D. dissertation, Thermosciences Division Report 116 (Mechanical Engineering Department, Stanford University, Stanford, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Demonstration experiments: sensor applied to (a) uniform-temperature path measurement, (b) two-temperature path measurement employing two lasers, and (c) path containing a linear temperature distribution. Note that in case (c) the cell is oriented vertically to stratify the air, providing a stable temperature distribution.

Fig. 2
Fig. 2

Raw data trace highlighting baseline fitting routines. Lines are numbered and can be referenced in Table 1.

Fig. 3
Fig. 3

(a) HITRAN prediction of O2 A-band absorption, showing the R-scan and P-scan regions probed. (b) Data recorded in two uniform-temperature path experiments (P = 1 atm, L = 20 cm) at temperatures of 292 and 710 K.

Fig. 4
Fig. 4

Comparison of absorbance data recorded in a uniform-temperature path (496 K, L = 20 cm) with data recorded in a two-temperature (296 K, L = 20 cm; in series with 712 K, L = 20 cm) path, each divided by the total path length. Although 496 K is nearly the mean of 296 and 712 K, the traces are easily distinguishable, graphically demonstrating the plausibility of the temperature distribution sensing strategy.

Fig. 5
Fig. 5

Boltzmann plots for (a) uniform-temperature path measurements (T actual = 292, 496, and 710 K) with R scan only and (b) two-temperature path measurement (T actual = 296, 712 K) with both R and P scans. Temperature labels correspond to best-fit lines through the measurements.

Fig. 6
Fig. 6

Results of uniform-temperature path measurements with the discretization technique. Because none of the temperatures probed are exactly the bin center temperatures, a compromise between two bins is obtained in all cases. Bars corresponding to the actual conditions would be centered at the T actual and have a height of 0.209.

Fig. 7
Fig. 7

Data recorded in a two-temperature (296, 712 K) path measurements with both the R-scan and the P-scan VCSELs.

Fig. 8
Fig. 8

Results of two-temperature path measurements with the discretization technique. Dashed bars correspond to actual conditions and cannot be matched exactly by the sensor because the bin center temperatures are fixed.

Fig. 9
Fig. 9

Data recorded in a linear temperature distribution measurement.

Fig. 10
Fig. 10

(a) Discretization technique and (b) distribution fitting technique results from a linear temperature distribution measurement. The measured linear temperature distribution (b) is everywhere within 5% of the actual linear temperature distribution.

Fig. 11
Fig. 11

Hybrid line-shape fitting method used to determine the area of line shapes recorded in nonuniform-temperature paths.

Fig. 12
Fig. 12

Condition number of the line-strength matrix S generated from the R-scan transitions (solid curve) and from the R-scan and P-scan transitions (dotted curve), indicating that the addition of the P-scan lines reduces the measurement error at high temperatures. The componentwise condition number estimate (dashed curve) demonstrates that the measurement error can be bin specific. Such information is useful for the selection of the optimum absorption lines for a given measurement.

Tables (1)

Tables Icon

Table 1 Spectroscopic Data Used in the Computations

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ai=--lnII0dν,
a1=S1TPxL, a2=S2TPxL,
SiT=SiT0QT0QTT0Texp-hcEik1T-1T0×1-exp-hcν0,ikT1-exp-hcν0,ikT0-1,
Ra1a2=fTS1T0S2T0×exp-hckE1-E21T-1T0.
S1T1S1T2S1TnS2T1S2T2S2TnSmT1SmT2SmTnPxL1PxL2PxLn=a1a2am,
Sx=a,
a292=8.70×10-48.08×10-49.67×10-47.99×10-49.45×10-47.27×10-48.35×10-46.08×10-46.78×10-44.48×10-4 a496=3.18×10-43.18×10-43.85×10-43.59×10-43.88×10-43.60×10-44.17×10-43.54×10-43.61×10-43.02×10-4 a710=1.64×10-41.71×10-41.89×10-42.13×10-42.30×10-42.11×10-42.20×10-42.28×10-42.15×10-42.13×10-4cm-1.
condS=S2S+2=σmaxSσmaxS+=σmaxSσminS,
δx2x2condSδa2a2,
T=hc2kE1-E20.72ΔE.

Metrics