Abstract

Measurements of NH3 and CO2 were made in bioreactor vent gases with distributed-feedback diode-laser sensors operating near 2 µm. Calculated spectra of NH3 and CO2 were used to determine the optimum transitions for interrogating with an absorption sensor. For ammonia, a strong and isolated absorption transition at 5016.977 cm-1 was selected for trace gas monitoring. For CO2, an isolated transition at 5007.787 cm-1 was selected to measure widely varying concentrations [500 parts per million (ppm) to 10%], with sufficient signal for low mole fractions and without being optically thick for high mole fractions. Using direct absorption and a 36-m total path-length multipass flow-through cell, we achieved a minimum detectivity of 0.25 ppm for NH3 and 40 ppm for CO2. We report on the quasi-continuous field measurements of NH3 and CO2 concentration in bioreactor vent gases that were recorded at NASA Johnson Space Center with a portable and automated sensor system over a 45-h data collection window.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Kirby, “Advanced water recovery system (WRS) integrated test plan,” (NASA Lyndon B. Johnson Space Center, Houston, Tex., 2000).
  2. R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
    [CrossRef]
  3. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  4. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [CrossRef]
  5. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  6. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
    [CrossRef]
  7. L. Lundsberg-Nielsen, “Molecular overtone spectroscopy on ammonia,” Ph.D. dissertation (Department of Chemistry, University of Copenhagen, Danish Institute of Fundamental Metrology, Copenhagen, Denmark, 1995).
  8. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  9. L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996).
    [CrossRef]
  10. S. Sarangi, “Analysis of the ν3 + ν4 band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 257–288 (1977).
    [CrossRef]
  11. S. Sarangi, “Analysis of line intensities in the two-micron band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 289–293 (1977).
    [CrossRef]
  12. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, Y. Ikeda, “In situ combustion measurements of CO2 near 2.0 µm by use of a distributed feedback diode-laser sensor,” Appl. Opt. 40, 821–828 (2001).
    [CrossRef]
  13. L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
    [CrossRef]
  14. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

2001 (3)

1998 (3)

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

1996 (2)

L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

1993 (1)

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

1977 (2)

S. Sarangi, “Analysis of the ν3 + ν4 band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 257–288 (1977).
[CrossRef]

S. Sarangi, “Analysis of line intensities in the two-micron band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 289–293 (1977).
[CrossRef]

Ahlberg, H.

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

Bäckström, S.

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

Baer, D. S.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Chou, S. I.

Claps, R.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Curl, R. F.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Englich, F. V.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Hanson, R. K.

Hegelund, F.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Höjer, S.

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

Ikeda, Y.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kim, S.

Kirby, G. M.

G. M. Kirby, “Advanced water recovery system (WRS) integrated test plan,” (NASA Lyndon B. Johnson Space Center, Houston, Tex., 2000).

Larson, A. G.

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

Leleux, D. P.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Lundsberg-Nielsen, L.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

L. Lundsberg-Nielsen, “Molecular overtone spectroscopy on ammonia,” Ph.D. dissertation (Department of Chemistry, University of Copenhagen, Danish Institute of Fundamental Metrology, Copenhagen, Denmark, 1995).

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Margolis, J. S.

L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Nagali, V.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nicolaisen, F. M.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Richter, D.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sanders, S. T.

Sandström, L.

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

Sarangi, S.

S. Sarangi, “Analysis of the ν3 + ν4 band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 257–288 (1977).
[CrossRef]

S. Sarangi, “Analysis of line intensities in the two-micron band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 289–293 (1977).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Segall, J.

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Tittel, F. K.

R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, R. F. Curl, “Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy,” Appl. Opt. 40, 4396–4403 (2001).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Infrared Phys. Technol. (1)

L. Sandström, S. Bäckström, H. Ahlberg, S. Höjer, A. G. Larson, “Gas monitoring using semiconductor lasers operating in the 2 µm wavelength region,” Infrared Phys. Technol. 39, 69–75 (1998).
[CrossRef]

J. Mol. Spectrosc. (1)

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

L. R. Brown, J. S. Margolis, “Empirical line parameters of NH3 from 4791 to 5294 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 56(2), 283–294 (1996).
[CrossRef]

S. Sarangi, “Analysis of the ν3 + ν4 band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 257–288 (1977).
[CrossRef]

S. Sarangi, “Analysis of line intensities in the two-micron band of ammonia,” J. Quant. Spectrosc. Radiat. Transfer 18, 289–293 (1977).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Other (3)

G. M. Kirby, “Advanced water recovery system (WRS) integrated test plan,” (NASA Lyndon B. Johnson Space Center, Houston, Tex., 2000).

L. Lundsberg-Nielsen, “Molecular overtone spectroscopy on ammonia,” Ph.D. dissertation (Department of Chemistry, University of Copenhagen, Danish Institute of Fundamental Metrology, Copenhagen, Denmark, 1995).

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Calculated NH3, H2O, and CO2 line strengths in the near infrared at 296 K.5-7

Fig. 2
Fig. 2

Measured survey spectra of pure NH3 near 2 µm recorded with an external-cavity diode laser. The transition that was selected for bioreactor monitoring is indicated on the plot.

Fig. 3
Fig. 3

Calculated spectra near 5017 cm-1 for 1 ppm NH3, 5% CO2, and 2% H2O (standard humidity).

Fig. 4
Fig. 4

Calculated peak absorption for the CO2 R(50) feature at 5007.787 cm-1 and the CO2 P(32) transition at 5017.030 cm-1 versus concentration for the range 500 ppm to 10% by use of typical sampling cell conditions (296 K, 100 Torr, 36 m).

Fig. 5
Fig. 5

Demonstration measurements with a distributed feedback diode laser confirm that the NH3 transition at 5016.977 cm-1 is isolated from interfering H2O and CO2 absorption. The capacity to measure NH3 and CO2 simultaneously with a single laser sweep is also evident.

Fig. 6
Fig. 6

High-resolution measurement of the NH3 transitions near 5017 cm-1.

Fig. 7
Fig. 7

Measured line strengths at various temperatures for the P P 3(3) s NH3 feature at 5016.977 cm-1 overlaid with predicted values.

Fig. 8
Fig. 8

Predicted minimum detectable mole fraction by use of peak absorption calculations for the NH3 feature at 5016.977 cm-1 for varying pressure conditions. MDA, minimum detectable absorbance.

Fig. 9
Fig. 9

Schematic of the NASA advanced WRS for water processing aboard spacecraft. The BWP includes the equipment within the dashed rectangle. psig, pounds per square inch (gauge).

Fig. 10
Fig. 10

Schematic of the sensor system to monitor bioreactor vent gases. DAQ, data acquisition.

Fig. 11
Fig. 11

Sample measurement of 3.7-ppm NH3 in the bioreactor vent gases. SNR, signal-to-noise ratio.

Fig. 12
Fig. 12

Sample measurement of 540-ppm CO2 in the bioreactor vent gases. SNR, signal-to-noise ratio.

Fig. 13
Fig. 13

Concentration measurements of CO2 and NH3 versus time over a 45-h period.

Fig. 14
Fig. 14

NH3 mole fraction records over a 1-h period overlaid with a 15-min running average that corresponds to half the gas residence time in the cell. The standard deviation of the measurements during this period is less than 0.1 ppm.

Tables (3)

Tables Icon

Table 1 Comparison of Measured and Published Parameters for the Ammonia Transitions near 5017 cm-1 (1993 nm)

Tables Icon

Table 2 Comparison of Measured and Published Parameters for the CO2 Transitiona

Tables Icon

Table 3 Aqueous-Phase Measurements of NH3 Concentration in the Bioreactor and their Corresponding Equilibrium Gas-Phase NH3 Concentrationsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ItI0=exp-SiϕPxjL.
SiT=SiT0QT0QT T0Texp-hcEik1T-1T0×1-exp-hcv0,ikT×1-exp-hcv0,ikT0-1.

Metrics