Abstract

A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the time–depth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the time–depth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the time–depth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 20–25 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).
  2. B. Billard, R. H. Abbot, M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
    [CrossRef]
  3. D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).
  4. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
    [CrossRef] [PubMed]
  5. I. E. Penner, V. S. Shamanaev, “Simultaneous sounding of the sea with shipborne and airborne lidars,” Opt. Atmos. Okeana 6, 107–111 (1993).
  6. J. H. Smart, K. H. Kwon, “Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles,” Lidar Remote Sensing of Natural Waters: From Theory to Practice: CIS Selected Papers, V. I. Feygels, Y. I. Kopilevich, eds., Proc. SPIE2964, 100–109 (1996).
    [CrossRef]
  7. J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
    [CrossRef] [PubMed]
  8. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves,” Appl. Opt. 37, 1589–1595 (1998).
    [CrossRef]
  9. J. H. Churnside, V. V. Tatarskii, J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt. 37, 3105–3112 (1998).
    [CrossRef]
  10. V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).
  11. J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
    [CrossRef]
  12. J. E. Kalshoven, M. R. Tierney, C. S. T. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
    [CrossRef] [PubMed]
  13. J. Cariou, B. Le Jenne, J. Lotran, Y. Guern, “Polarization effects of sea water and underwater targets,” Appl. Opt. 29, 1689–1695 (1990).
    [CrossRef] [PubMed]
  14. W. P. Van de Merwe, D. R. Huffman, B. V. Bronk, “Reproductibility and sensitivity of polarized light scattering for identifying bacterial suspensions,” Appl. Opt. 28, 5052–5057 (1989).
    [CrossRef] [PubMed]
  15. G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596–1601 (1998).
    [CrossRef]
  16. A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
    [CrossRef]
  17. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).
  18. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).
  19. E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).
  20. L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).
  21. L. S. Dolin, “Characteristics of a restricted light beam in an absorbing medium with highly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 19, 400–405 (1983).
  22. Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).
  23. K. J. Voss, E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
    [CrossRef] [PubMed]
  24. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).
  25. A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
    [CrossRef]
  26. A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).
  27. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982).
    [CrossRef] [PubMed]
  28. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).
  29. A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).
  30. A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).
  31. D. B. Rogozkin, “Light pulse beam propagation in anisotropically scattering medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 23, 275–281 (1987).

1999 (1)

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

1998 (4)

1997 (2)

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
[CrossRef] [PubMed]

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).

1995 (1)

1993 (2)

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

I. E. Penner, V. S. Shamanaev, “Simultaneous sounding of the sea with shipborne and airborne lidars,” Opt. Atmos. Okeana 6, 107–111 (1993).

1990 (2)

J. Cariou, B. Le Jenne, J. Lotran, Y. Guern, “Polarization effects of sea water and underwater targets,” Appl. Opt. 29, 1689–1695 (1990).
[CrossRef] [PubMed]

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).

1989 (2)

W. P. Van de Merwe, D. R. Huffman, B. V. Bronk, “Reproductibility and sensitivity of polarized light scattering for identifying bacterial suspensions,” Appl. Opt. 28, 5052–5057 (1989).
[CrossRef] [PubMed]

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).

1988 (2)

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
[CrossRef] [PubMed]

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).

1987 (1)

D. B. Rogozkin, “Light pulse beam propagation in anisotropically scattering medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 23, 275–281 (1987).

1986 (2)

A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).

B. Billard, R. H. Abbot, M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
[CrossRef]

1985 (1)

E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).

1984 (2)

K. J. Voss, E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef] [PubMed]

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

1983 (1)

L. S. Dolin, “Characteristics of a restricted light beam in an absorbing medium with highly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 19, 400–405 (1983).

1982 (1)

1979 (1)

L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).

1976 (1)

Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).

Abbot, R. H.

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

B. Billard, R. H. Abbot, M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
[CrossRef]

Berry, R. E.

Billard, B.

Bravo-Zhivotovsky, D. M.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

Brennan, M. J.

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
[CrossRef]

Bronk, B. V.

Bunkin, A. F.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

Buntzen, R. R.

Burenkov, V. I.

V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).

Cariou, J.

Chaykovskiy, L. I.

E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).

Churnside, J. H.

Dabney, P. W.

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

Daughtry, C. S. T.

Dolin, L. S.

L. S. Dolin, “Characteristics of a restricted light beam in an absorbing medium with highly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 19, 400–405 (1983).

L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

Fadeyev, V. V.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

Fry, E. S.

Gilbert, G. D.

Goldin, Yu. A.

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).

A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Gordon, H. R.

Guern, Y.

Gureev, B. A.

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Hoge, F. E.

Huffman, D. R.

Kadyshevich, Ye. V.

Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).

Kalshoven, J. E.

J. E. Kalshoven, M. R. Tierney, C. S. T. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
[CrossRef] [PubMed]

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

Kelbalikhanov, B. F.

V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).

Kondranin, T. V.

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Kouzoubov, A.

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
[CrossRef]

Krabill, W. B.

Krekov, G. M.

Krekova, M. M.

Kwon, K. H.

J. H. Smart, K. H. Kwon, “Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles,” Lidar Remote Sensing of Natural Waters: From Theory to Practice: CIS Selected Papers, V. I. Feygels, Y. I. Kopilevich, eds., Proc. SPIE2964, 100–109 (1996).
[CrossRef]

Le Jenne, B.

Lotran, J.

Lyubovtseva, Yu. S.

Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).

McMurtrey, J. E.

Mirkaliev, D. M.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

Myasnikov, Eu. V.

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Penner, I. E.

I. E. Penner, V. S. Shamanaev, “Simultaneous sounding of the sea with shipborne and airborne lidars,” Opt. Atmos. Okeana 6, 107–111 (1993).

Penny, M. F.

Rogozkin, D. B.

D. B. Rogozkin, “Light pulse beam propagation in anisotropically scattering medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 23, 275–281 (1987).

Rosenberg, G. V.

Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).

Savelyev, V. A.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

Savelyev, V. S.

L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).

Shamanaev, V. S.

Shchegolkov, Yu. B.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

Shchepetkin, A. F.

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Slabodyanin, V. P.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

Smart, J. H.

J. H. Smart, K. H. Kwon, “Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles,” Lidar Remote Sensing of Natural Waters: From Theory to Practice: CIS Selected Papers, V. I. Feygels, Y. I. Kopilevich, eds., Proc. SPIE2964, 100–109 (1996).
[CrossRef]

Stefantsev, L. A.

V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).

Swift, R. N.

Tatarskii, V. V.

Thomas, J. C.

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
[CrossRef]

Tierney, M. R.

Van de Merwe, W. P.

Vasilkov, A. P.

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

Vlasov, D. V.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

Voss, K. J.

Wilson, J. J.

Wright, C. W.

Yungel, J. K.

Zakharov, A. K.

A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).

Zege, E. P.

E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).

Appl. Opt. (12)

B. Billard, R. H. Abbot, M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
[CrossRef]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
[CrossRef] [PubMed]

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves,” Appl. Opt. 37, 1589–1595 (1998).
[CrossRef]

J. H. Churnside, V. V. Tatarskii, J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight,” Appl. Opt. 37, 3105–3112 (1998).
[CrossRef]

J. E. Kalshoven, M. R. Tierney, C. S. T. Daughtry, J. E. McMurtrey, “Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser,” Appl. Opt. 34, 2745–2749 (1995).
[CrossRef] [PubMed]

J. Cariou, B. Le Jenne, J. Lotran, Y. Guern, “Polarization effects of sea water and underwater targets,” Appl. Opt. 29, 1689–1695 (1990).
[CrossRef] [PubMed]

W. P. Van de Merwe, D. R. Huffman, B. V. Bronk, “Reproductibility and sensitivity of polarized light scattering for identifying bacterial suspensions,” Appl. Opt. 28, 5052–5057 (1989).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596–1601 (1998).
[CrossRef]

A. Kouzoubov, M. J. Brennan, J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998).
[CrossRef]

K. J. Voss, E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef] [PubMed]

H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982).
[CrossRef] [PubMed]

Dokl. Akad. Nauk USSR (1)

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984).

IEEE Trans. Geosci. Remote Sens. (1)

J. E. Kalshoven, P. W. Dabney, “Remote sensing of the Earth’s surface with an airborne polarized lidar,” IEEE Trans. Geosci. Remote Sens. 31, 438–446 (1993).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (9)

L. S. Dolin, “Characteristics of a restricted light beam in an absorbing medium with highly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 19, 400–405 (1983).

Ye. V. Kadyshevich, Yu. S. Lyubovtseva, G. V. Rosenberg, “Scattering matrices of light for Pacific and Atlantic waters,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 186–195 (1976).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne polarization lidar estimation of the vertical profile of seawater light scattering coefficient,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 33, 519–524 (1997).

A. K. Zakharov, Yu. A. Goldin, “The Monte-Carlo calculation of the structure of narrow non-stationary light beams in seawater up to a large optical depth,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 22, 403–410 (1986).

D. B. Rogozkin, “Light pulse beam propagation in anisotropically scattering medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 23, 275–281 (1987).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “A method for calculation of power of backscattered radiation at impulse remote sensing of stratified water medium,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 25, 102–105 (1989).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Determination of vertical dependence of the scattering coefficient from polarization characteristics of backscattering light at pulse remote sensing of the ocean,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 26, 307–312 (1990).

A. P. Vasilkov, T. V. Kondranin, Eu. V. Myasnikov, “Polarization characteristics in the backscattering signal for pulsed sensing of the ocean by a narrow light beam,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 635–642 (1988).

E. P. Zege, L. I. Chaykovskiy, “Approximate transfer equations for polarized radiation in media with strongly anisotropic scattering,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 21, 1043–1049 (1985).

Izv. Vuzov, Radiophysics (1)

L. S. Dolin, V. S. Savelyev, “Theory for the propagation of a narrow light beam in a stratified scattering medium,” Izv. Vuzov, Radiophysics, 22, 1310–1317 (1979).

J. Geophys. Res. (1)

A. Kouzoubov, M. J. Brennan, J. C. Thomas, R. H. Abbot, “Monte Carlo simulations of the influence of particle nonsphericity on remote sensing of ocean water,” J. Geophys. Res. 104, 31731–31737 (1999).
[CrossRef]

Opt. Atmos. Okeana (1)

I. E. Penner, V. S. Shamanaev, “Simultaneous sounding of the sea with shipborne and airborne lidars,” Opt. Atmos. Okeana 6, 107–111 (1993).

Other (5)

J. H. Smart, K. H. Kwon, “Comparisons between in situ and remote sensing estimates of diffuse attenuation profiles,” Lidar Remote Sensing of Natural Waters: From Theory to Practice: CIS Selected Papers, V. I. Feygels, Y. I. Kopilevich, eds., Proc. SPIE2964, 100–109 (1996).
[CrossRef]

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savelyev, V. V. Fadeyev, Yu. B. Shchegolkov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean (Institute of Applied Physics, Gorky, USSR, 1987), pp. 84–125 (in Russian).

V. I. Burenkov, B. F. Kelbalikhanov, L. A. Stefantsev, “Vertical profiles of the volume scattering function for various scattering angles,” in Variability of Transmittance and Light Scattering in Oceanic Waters, (Shirshov Institute of Oceanology, Moscow, 1981), pp. 52–54 (in Russian).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, T. V. Kondranin, Eu. V. Myasnikov, A. F. Shchepetkin, “Estimate of values of the diffuse attenuation coefficient from airborne lidar remote sensing of the sea,” in Optics of the Sea and Atmosphere (Institute of Biophysics, Krasnoyarsk, Russia, 1990), Part 1, pp. 18–19 (in Russian).

A. P. Vasilkov, Yu. A. Goldin, B. A. Gureev, “Airborne lidar remote sensing of vertical distribution of the seawater scattering coefficient,” in Applied Laser Radar Technology, G. W. Kamerman, W. E. Keicher, eds., Proc. SPIE1936, 233–244 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Map showing flight segments together with the location of ship stations discussed in the text.

Fig. 2
Fig. 2

Block diagram of the APL.

Fig. 3
Fig. 3

Degree of polarization of the backscattered radiation as a function of time and depth for various vertical profiles of seawater turbidity. Profile 1 corresponds to clear waters with no stratification in the upper layer (near Station 16 of R/V Cape Henlopen). Profiles 2 and 3 correspond to moderate turbid waters with weak stratification in the upper 15-m layer and near-bottom turbidity layer (Stations 4 and 7). Profile 4 corresponds to turbid waters with a strong near-bottom turbidity layer (near Station 29). Values of the beam attenuation coefficient for those stations are given in the text.

Fig. 4
Fig. 4

(a) Normalized waveforms of two orthogonal-polarized components of the lidar backscattered signal, registered on 26 August 1996; P co is the copolarized component, P cross is the cross-polarized component. (b) Retrieved profile of the scattering coefficient in relative units. (c) A profile of the beam attenuation coefficient measured at Station 16 (Δt = 20 h, ΔL = 9 km).

Fig. 5
Fig. 5

(a) Normalized waveforms of two orthogonal-polarized components of the lidar backscattered signal, registered on 26 August 1996. (b) Retrieved profile of the scattering coefficient in relative units. (c) A profile of the beam attenuation coefficient measured at Station 4 (Δt = 2 h, ΔL = 1.4 km).

Fig. 6
Fig. 6

(a) Normalized waveforms of two cross-polarized components of the lidar backscattered signal, registered on 26 August 1996. (b) Retrieved profile of the scattering coefficient in relative units. (c) A profile of the beam attenuation coefficient measured at Station 7 (Δt = 1 h, ΔL = 3.4 km).

Fig. 7
Fig. 7

(a) Normalized waveforms of two cross-polarized components of the lidar backscattered signal, registered on 26 August 1996. (b) Retrieved profile of the scattering coefficient in relative units. (c) A profile of the beam attenuation coefficient measured at Station 29 (Δt = 8 h, ΔL = 0.8 km).

Fig. 8
Fig. 8

Waveforms of the normalized copolarized and cross-polarized components of the backscattered light showing reflection from the sea floor for the water depths listed in the upper right-hand corner of each panel.

Fig. 9
Fig. 9

Two-dimensional section of spatial distribution of the retrieved scattering coefficient for a 16-km segment of the 26 August 1996 flight over shelf waters. Isolines of the scattering coefficient are given in relative units. The upper scale is the relative distance along the flight line, whereas the lower scale is the flight relative time in seconds. The plus signs denote approximate locations for Stations 4 and 5 of the R/V Cape Henlopen.

Fig. 10
Fig. 10

Total power (in millivolts) of three lidar pulses is plotted as a function of time and depth. An exponential function exp(-K d ct) approximating the signal decline is shown by the dashed curves over a depth range of 5–10 m.

Tables (2)

Tables Icon

Table 1 Lidar Technical Specifications

Tables Icon

Table 2 Values of the Effective Attenuation Coefficient K and the Correlation Coefficient

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

γ2=2π 0π γ2 sin γβγdγ2π 0 γ3βγdγ,
gt=2zc=M22π, zM11π, zexp-2 0z ϕzbzdz,
gt=Pcot-PcrosstPcot+Pcrosst,
ϕ=120M11-M22γdγ,
γ0  π/2,  12γ0πM11γsin γdγ  1.
gg0 exp-ϕbz,
bz=ct2=-1ϕcddtln gt.
Pt=2zc=P0AT1-r2nH+z2 Δzβπz×exp-2 0z Γzdz,
Γz=Kdz+ξybz,
y=ψγ2/21/2,
Kd=ln Pt1-ln Pt2ct2-t1.
Drms=2 PrmsPcross,

Metrics