Abstract

We report examples of the use of a scanning tunable CO2 laser lidar system in the 9–11-µm region to construct images of vegetation and rocks at ranges as far as 5 km from the instrument. Range information is combined with horizontal and vertical distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Object classification is based on reflectance spectra, which are sufficiently distinct to allow discrimination between several tree species, between trees and scrub vegetation, and between natural and artificial targets. Limitations imposed by laser speckle noise are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Academic, Boston, 1997), pp. 389–473.
  2. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  3. N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
    [CrossRef]
  4. P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
    [CrossRef]
  5. R. E. Roger, J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
    [CrossRef]
  6. Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
    [CrossRef]
  7. A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
    [CrossRef]
  8. Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
    [CrossRef]
  9. Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
    [CrossRef]
  10. F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants,” Appl. Opt. 22, 2991–3000 (1983).
    [CrossRef] [PubMed]
  11. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
    [CrossRef] [PubMed]
  12. K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
    [CrossRef]
  13. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
    [CrossRef]
  14. W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
    [CrossRef]
  15. R. M. Narayanan, M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
    [CrossRef]
  16. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37, 4744–4749 (1998).
    [CrossRef]
  17. H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
    [CrossRef]
  18. D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
    [CrossRef]
  19. P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
    [CrossRef]
  20. R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
    [CrossRef]
  21. T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
    [CrossRef]
  22. A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
    [CrossRef]
  23. M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
    [CrossRef]
  24. A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
    [CrossRef]
  25. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2-laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
    [CrossRef]
  26. C. B. Carlisle, J. E. Vanderlaan, L. W. Carr, P. Adam, J. P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical-vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  27. P. E. Powers, T. J. Kulp, R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39, 1440–1448 (2000).
    [CrossRef]
  28. D. C. Thompson, G. E. Busch, C. J. Hewitt, D. K. Remelius, T. Shimada, C. E. M. Strauss, C. W. Wilson, T. J. Zaugg, “High-speed random access laser tuning,” Appl. Opt. 38, 2545–2553 (1999).
    [CrossRef]
  29. D. H. Nelson, D. L. Walters, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39, 1857–1871 (2000).
    [CrossRef]
  30. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. D. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–54.
  31. E. P. MacKerrow, M. J. Schmitt, D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
    [CrossRef]
  32. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
    [CrossRef] [PubMed]
  33. J. A. Fox, C. R. Gautier, J. L. Ahl, “Practical considerations for the design of CO2 lidar systems,” Appl. Opt. 27, 847–855 (1988).
    [CrossRef] [PubMed]
  34. M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 1. Theory,” J. Mod. Opt. 38, 2115–2135 (1991).
    [CrossRef]
  35. M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 2. Experimental results,” J. Mod. Opt. 42, 2081–2094 (1995).
    [CrossRef]
  36. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2-laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
    [CrossRef] [PubMed]
  37. P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2-laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
    [CrossRef]
  38. R. M. Narayanan, S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
    [CrossRef]
  39. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224 (1992).
    [CrossRef] [PubMed]
  40. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
    [CrossRef] [PubMed]
  41. M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
    [CrossRef]
  42. R. N. Clark, in Manual of Remote Sensing, A. Rencz, ed. (Wiley, New York, 1999), Chap. 1.
  43. R. M. Narayanan, S. E. Green, D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
    [CrossRef] [PubMed]
  44. The ASTER spectral library is available at the web site of the Jet Propulsion Laboratory, Pasadena, Calif.
  45. R. J. Nemzek, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1995).
  46. M. A. Jarzembski, V. Srivastava, “Comparison of continuous-wave CO2 lidar calibration by use of Earth–surface targets in laboratory and airborne measurements,” Appl. Opt. 37, 7120–7127 (1998).
    [CrossRef]
  47. Ref. 1, Chapt. 9.
  48. J. A. Richards, X. Jia, Remote Sensing Digital Image Analysis (Springer, New York, 1999), Chapt. 9.
  49. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976).
    [CrossRef]
  50. HITRAN 1996 Spectroscopic Database (Ontar Corporation, North Andover, Mass.).
  51. W. B. Grant, “Water-vapor absorption coefficients in the 8–13-µm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  52. A. C. Rencher, Methods of Multivariate Analysis (Wiley, New York, 1995), p. 303.
  53. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), p. 118.
  54. Ref. 48, p. 249.
  55. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833–1840 (1999).
    [CrossRef]
  56. X. Yu, I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).
    [CrossRef]

2000

1999

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
[CrossRef]

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

R. M. Narayanan, M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
[CrossRef]

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833–1840 (1999).
[CrossRef]

D. C. Thompson, G. E. Busch, C. J. Hewitt, D. K. Remelius, T. Shimada, C. E. M. Strauss, C. W. Wilson, T. J. Zaugg, “High-speed random access laser tuning,” Appl. Opt. 38, 2545–2553 (1999).
[CrossRef]

1998

Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
[CrossRef]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37, 4744–4749 (1998).
[CrossRef]

M. A. Jarzembski, V. Srivastava, “Comparison of continuous-wave CO2 lidar calibration by use of Earth–surface targets in laboratory and airborne measurements,” Appl. Opt. 37, 7120–7127 (1998).
[CrossRef]

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

1997

E. P. MacKerrow, M. J. Schmitt, D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
[CrossRef]

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
[CrossRef]

1996

R. E. Roger, J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
[CrossRef]

1995

C. B. Carlisle, J. E. Vanderlaan, L. W. Carr, P. Adam, J. P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical-vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 2. Experimental results,” J. Mod. Opt. 42, 2081–2094 (1995).
[CrossRef]

1994

R. M. Narayanan, S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

1993

R. M. Narayanan, S. E. Green, D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

X. Yu, I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).
[CrossRef]

1992

1991

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 1. Theory,” J. Mod. Opt. 38, 2115–2135 (1991).
[CrossRef]

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

1990

1989

M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
[CrossRef]

1988

1987

1985

1984

A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
[CrossRef]

A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
[CrossRef]

1983

1982

Acker, S. A.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Adam, P.

Ahl, J. L.

Ahlberg, H.

Albright, K. L.

Alexander, D. R.

Arnold, J. F.

R. E. Roger, J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
[CrossRef]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Bartholomew, M. J.

M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
[CrossRef]

Ben-David, A.

Bird, A. W.

Bjarnason, J. O.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Bradley, J.

Busch, G. E.

Caltabiano, T.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

Carlisle, C. B.

Carr, L. W.

Casperson, D. E.

Cecchi, G.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

Chen, Z. K.

Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
[CrossRef]

Chiaroni, J. P.

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chopping, M.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Clark, R. N.

R. N. Clark, in Manual of Remote Sensing, A. Rencz, ed. (Wiley, New York, 1999), Chap. 1.

Cohen, W. B.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Conner, P. M.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

Cooper, D. I.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Cudahy, T. J.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

Cvijin, P. V.

D’Amico, F. M.

Dahn, H. G.

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

Deangelis, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

Drake, N. A.

N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
[CrossRef]

Duda, R. O.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), p. 118.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Edner, H.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Eichinger, W. E.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Elvidge, C. D.

Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
[CrossRef]

Emery, S. L.

Eng, S. T.

Faris, G. W.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Ferrara, R.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

Flamant, P. H.

Fox, J. A.

Froude, F.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Gautier, C. R.

Gillespie, A. R.

A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. D. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–54.

Gotoff, S. W.

Grant, W. B.

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Green, S. E.

R. M. Narayanan, S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
[CrossRef]

R. M. Narayanan, S. E. Green, D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

Groeneveld, D. P.

Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
[CrossRef]

Gunther, K. P.

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

Haner, D. A.

Harding, D.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Hart, P. E.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), p. 118.

Harwood, M.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Hatake, K.

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Havstad, K.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Hewitt, C. J.

Hindman, M.

Ho, C.

Hof, D. E.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Hoff, R. M.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Hoge, F. E.

Hoover, G.

M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
[CrossRef]

Ignjatijevic, D.

Itabe, T.

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Jarzembski, M. A.

Jia, X.

J. A. Richards, X. Jia, Remote Sensing Digital Image Analysis (Springer, New York, 1999), Chapt. 9.

Johansson, J.

Kahle, A. B.

M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
[CrossRef]

A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
[CrossRef]

A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
[CrossRef]

Kana, T. M.

Kanoh, M.

Kavaya, M. J.

Kawahara, T. D.

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Kennedy, R.

Killinger, D. K.

Kristmannsdottir, H.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Kulp, T. J.

Kustas, W.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Lefsky, M. A.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Ludeker, W.

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

Lundqvist, S.

MacKerrow, E. P.

Mackin, S.

N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
[CrossRef]

Martin, J. B.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Mason, P.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

Mazzinghi, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

Mendas, I.

Menyuk, C. R.

Menyuk, N.

Menzies, R. T.

Narayanan, R. M.

R. M. Narayanan, M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
[CrossRef]

R. M. Narayanan, S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
[CrossRef]

R. M. Narayanan, S. E. Green, D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

Nash, D. B.

A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
[CrossRef]

Nelson, D. H.

Nemzek, R. J.

R. J. Nemzek, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1995).

Nomura, A.

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Nomura, E.

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Ohlidal, M.

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 2. Experimental results,” J. Mod. Opt. 42, 2081–2094 (1995).
[CrossRef]

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 1. Theory,” J. Mod. Opt. 38, 2115–2135 (1991).
[CrossRef]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Olsson, B.

Oppenheim, U. P.

Palluconi, F. D.

A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
[CrossRef]

Pantani, L.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2-laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
[CrossRef]

Parker, G. G.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Persson, U.

Petrin, R. R.

Pflum, M. T.

R. M. Narayanan, M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
[CrossRef]

Phillips, R. N.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

Pippi, I.

Porch, W. M.

Powers, P. E.

Priedhorsky, W. C.

Quick, C. R.

Quick, R. C.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Rango, A.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Reed, I. S.

X. Yu, I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).
[CrossRef]

Remelius, D. K.

Rencher, A. C.

A. C. Rencher, Methods of Multivariate Analysis (Wiley, New York, 1995), p. 303.

Richards, J. A.

J. A. Richards, X. Jia, Remote Sensing Digital Image Analysis (Springer, New York, 1999), Chapt. 9.

Ritchie, J.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Roger, R. E.

R. E. Roger, J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
[CrossRef]

Saito, Y.

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Scarlett, W. R.

Schmitt, M. J.

Schmugge, T.

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

Schowengerdt, R. A.

R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Academic, Boston, 1997), pp. 389–473.

Schulz, H.

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

Settle, J. J.

N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
[CrossRef]

Seville-Jones, D.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Sheppard, A.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Shimada, T.

Shumate, M. S.

A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
[CrossRef]

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2-laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
[CrossRef] [PubMed]

Sigurdsson, K. H.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Smith, R. C.

Solis, M. S.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Spies, T. A.

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Sreckovic, M.

Srivastava, V.

Staenz, K.

P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
[CrossRef]

Strapp, W.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Strauss, C. E. M.

Sugimoto, N.

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Sunesson, A.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Svanberg, S.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

Swift, R. N.

Teillet, P. M.

P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
[CrossRef]

Theiler, J.

Thompson, D. C.

Tiee, J.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Tirelli, D.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

Valentini, R.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

Vanderlaan, J. E.

Wallinder, E.

Walters, D. L.

Weibring, P.

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

Whitbourn, L. B.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

Williams, D. J.

P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
[CrossRef]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Wilson, C. W.

Wilson, S. K.

Wright, C. W.

Yu, X.

X. Yu, I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).
[CrossRef]

Yungel, J. K.

Zaugg, T. J.

Agric. Forest Meteorol.

D. I. Cooper, W. E. Eichinger, D. E. Hof, D. Seville-Jones, R. C. Quick, J. Tiee, “Observations of coherent structures from a scanning lidar over an irrigated orchard,” Agric. Forest Meteorol. 67, 239–252 (1994).
[CrossRef]

Appl. Opt.

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2-laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
[CrossRef] [PubMed]

M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter data,” Appl. Opt. 22, 2619–2628 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants,” Appl. Opt. 22, 2991–3000 (1983).
[CrossRef] [PubMed]

H. Ahlberg, S. Lundqvist, B. Olsson, “CO2-laser long-path measurements of diffuse leakages from a petrochemical plant,” Appl. Opt. 24, 3924–3928 (1985).
[CrossRef]

P. V. Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2-laser wavelengths: effects on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
[CrossRef]

J. A. Fox, C. R. Gautier, J. L. Ahl, “Practical considerations for the design of CO2 lidar systems,” Appl. Opt. 27, 847–855 (1988).
[CrossRef] [PubMed]

W. B. Grant, “Water-vapor absorption coefficients in the 8–13-µm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224 (1992).
[CrossRef] [PubMed]

R. M. Narayanan, S. E. Green, D. R. Alexander, “Mid-infrared laser reflectance of moist soils,” Appl. Opt. 32, 6043–6052 (1993).
[CrossRef] [PubMed]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833–1840 (1999).
[CrossRef]

D. C. Thompson, G. E. Busch, C. J. Hewitt, D. K. Remelius, T. Shimada, C. E. M. Strauss, C. W. Wilson, T. J. Zaugg, “High-speed random access laser tuning,” Appl. Opt. 38, 2545–2553 (1999).
[CrossRef]

C. B. Carlisle, J. E. Vanderlaan, L. W. Carr, P. Adam, J. P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical-vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37, 4744–4749 (1998).
[CrossRef]

M. A. Jarzembski, V. Srivastava, “Comparison of continuous-wave CO2 lidar calibration by use of Earth–surface targets in laboratory and airborne measurements,” Appl. Opt. 37, 7120–7127 (1998).
[CrossRef]

P. E. Powers, T. J. Kulp, R. Kennedy, “Demonstration of differential backscatter absorption gas imaging,” Appl. Opt. 39, 1440–1448 (2000).
[CrossRef]

D. H. Nelson, D. L. Walters, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39, 1857–1871 (2000).
[CrossRef]

E. P. MacKerrow, M. J. Schmitt, D. C. Thompson, “Effect of speckle on lidar pulse-pair ratio statistics,” Appl. Opt. 36, 8650–8669 (1997).
[CrossRef]

Y. Saito, M. Kanoh, K. Hatake, T. D. Kawahara, A. Nomura, “Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring,” Appl. Opt. 37, 431–437 (1998).
[CrossRef]

Appl. Phys. B

P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, “Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC),” Appl. Phys. B 67, 419–426 (1998).
[CrossRef]

Atmos. Environ.

R. M. Hoff, M. Harwood, A. Sheppard, F. Froude, J. B. Martin, W. Strapp, “Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC,” Atmos. Environ. 31, 2123–2134 (1997).
[CrossRef]

Geophys. Res. Lett.

A. B. Kahle, M. S. Shumate, D. B. Nash, “Active airborne infrared-laser system for identification of surface rock and minerals,” Geophys. Res. Lett. 11, 1149–1152 (1984).
[CrossRef]

A. R. Gillespie, A. B. Kahle, F. D. Palluconi, “Mapping alluvial fans in Death-Valley, California, using multichannel thermal infrared images,” Geophys. Res. Lett. 11, 1153–1156 (1984).
[CrossRef]

IEEE Photonics Technol. Lett.

R. M. Narayanan, S. E. Green, “Field measurements of natural and artificial targets using a mid-infrared laser reflectance sensor,” IEEE Photonics Technol. Lett. 6, 1023–1026 (1994).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

T. J. Cudahy, L. B. Whitbourn, P. M. Conner, P. Mason, R. N. Phillips, “Mapping surface mineralogy and scattering behavior using backscattered reflectance from a hyperspectral midinfrared airborne CO2 laser system (MIRACO(2)LAS),” IEEE Trans. Geosci. Remote Sens. 37, 2019–2034 (1999).
[CrossRef]

IEEE Trans. Signal Process.

X. Yu, I. S. Reed, “Comparative performance analysis of adaptive multispectral detectors,” IEEE Trans. Signal Process. 41, 2639–2656 (1993).
[CrossRef]

Int. J. Infrared Millim. Waves

R. M. Narayanan, M. T. Pflum, “Remote sensing of vegetation stress and soil contamination using CO2 laser reflectance ratios,” Int. J. Infrared Millim. Waves 20, 1593–1617 (1999).
[CrossRef]

Int. J. Remote Sens.

R. E. Roger, J. F. Arnold, “Reliably estimating the noise in AVIRIS hyperspectral images,” Int. J. Remote Sens. 17, 1951–1962 (1996).
[CrossRef]

M. J. Bartholomew, A. B. Kahle, G. Hoover, “Infrared spectroscopy (2.3–20 µm) for the geological interpretation of remotely sensed multispectral thermal infrared data,” Int. J. Remote Sens. 10, 529–544 (1989).
[CrossRef]

J. Geophys. Res. Atmos.

H. Edner, G. W. Faris, A. Sunesson, S. Svanberg, J. O. Bjarnason, H. Kristmannsdottir, K. H. Sigurdsson, “Lidar search for atmospheric atomic mercury in Icelandic geothermal fields,” J. Geophys. Res. Atmos. 96, 2977–2986 (1991).
[CrossRef]

J. Mod. Opt.

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 1. Theory,” J. Mod. Opt. 38, 2115–2135 (1991).
[CrossRef]

M. Ohlidal, “Comparison of the 2-dimensional Fraunhofer and the 2-dimensional Fresnel approximations in the analysis of surface roughness by angle speckle correlation. 2. Experimental results,” J. Mod. Opt. 42, 2081–2094 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Saito, K. Hatake, E. Nomura, T. D. Kawahara, A. Nomura, N. Sugimoto, T. Itabe, “Range-resolved image detection of laser-induced fluorescence of natural trees for vegetation distribution monitoring,” Jpn. J. Appl. Phys. 36, 7024–7027 (1997).
[CrossRef]

Remote Sens. Environ.

K. P. Gunther, H. G. Dahn, W. Ludeker, “Remote-sensing vegetation status by laser-induced fluorescence,” Remote Sens. Environ. 47, 10–17 (1994).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. Deangelis, “Remote-sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far-field measurement techniques,” Remote Sens. Environ. 47, 18–28 (1994).
[CrossRef]

W. Ludeker, H. G. Dahn, K. P. Gunther, H. Schulz, “Laser-induced fluorescence: a method to detect the vitality of Scots pines,” Remote Sens. Environ. 68, 225–236 (1999).
[CrossRef]

Z. K. Chen, C. D. Elvidge, D. P. Groeneveld, “Monitoring seasonal dynamics of arid land vegetation using AVIRIS data,” Remote Sens. Environ. 65, 255–266 (1998).
[CrossRef]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, O. Williams, “Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

N. A. Drake, S. Mackin, J. J. Settle, “Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery,” Remote Sens. Environ. 68, 12–25 (1999).
[CrossRef]

P. M. Teillet, K. Staenz, D. J. Williams, “Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions,” Remote Sens. Environ. 61, 139–149 (1997).
[CrossRef]

A. Rango, M. Chopping, J. Ritchie, K. Havstad, W. Kustas, T. Schmugge, “Morphological characteristics of shrub coppice dunes in desert grasslands of southern New Mexico derived from scanning lidar,” Remote Sens. Environ. 74, 26–44 (2000).
[CrossRef]

M. A. Lefsky, W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, D. Harding, “Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests,” Remote Sens. Environ. 70, 339–361 (1999).
[CrossRef]

Other

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. D. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 9–54.

R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Academic, Boston, 1997), pp. 389–473.

R. N. Clark, in Manual of Remote Sensing, A. Rencz, ed. (Wiley, New York, 1999), Chap. 1.

Ref. 1, Chapt. 9.

J. A. Richards, X. Jia, Remote Sensing Digital Image Analysis (Springer, New York, 1999), Chapt. 9.

E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1976).
[CrossRef]

HITRAN 1996 Spectroscopic Database (Ontar Corporation, North Andover, Mass.).

A. C. Rencher, Methods of Multivariate Analysis (Wiley, New York, 1995), p. 303.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), p. 118.

Ref. 48, p. 249.

The ASTER spectral library is available at the web site of the Jet Propulsion Laboratory, Pasadena, Calif.

R. J. Nemzek, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lidar spectra of natural and man-made objects: The lidar return signal magnitude is plotted (a), (b) versus wavelength (c) versus line index number. Each spectrum is referenced to aluminum, which is assumed to be spectrally flat. (b) The two spectra are reduced to fit. (c) Note that the wavelength gaps are ignored.

Fig. 2
Fig. 2

Images of lidar return energy for two selected wavelengths (9.27 and 10.59 µm) and summed over all wavelengths: white, lower return strength; black, higher return strength. The scene is the same as in Fig. 3. The range is 4.1 km and the dimensions of the image are 21 m in both horizontal and vertical directions.

Fig. 3
Fig. 3

Scan area and cluster image representation, generated by the K-means cluster analysis of the lidar data. Both the photograph and lidar data were obtained in the winter season when grasses are dormant and brown colored. The rock cliff in the lower half of the scene is probably a basalt type.

Fig. 4
Fig. 4

Spectra of the clusters indicated in Fig. 3. Each spectrum is the mean spectrum for all the pixels belonging to that cluster: Top, the absolute spectra are plotted (referenced to aluminum); bottom, the spectra are plotted as the difference from the mean spectrum of the entire image. The abrupt change at line 18 is due to a large wavelength gap near the center, as shown in Fig. 1(a).

Fig. 5
Fig. 5

Scatterplot of lidar signal strengths at two wavelengths, 10P20 (λ = 10.59 µm) and 9R20 (λ = 9.27 µm).

Fig. 6
Fig. 6

Cluster representation of scene with three spatial dimensions plotted. The square outline indicates the area scanned. The range is relative to the scene, where 0 m corresponds to a lidar range of 4448 m and 400 m corresponds to a lidar range of 4048 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SNR=MSmSc1/2=SmLzλ,
H=j=1k nj(y¯j-y¯tot)(y¯j-y¯tot)T,
E=j=1ki=1nj(yij-y¯j)(yij-y¯j)T.

Metrics