Abstract

The output beam profile of a laser diode with weak-to-moderate levels of optical feedback is shown to arise from interference of the emitted and feedback fields. This has been determined from a series of experiments, that measure the output spatial beam profile as the optical feedback field into the laser diode is spatially manipulated. Tilting, focusing, and aperturing the feedback field led to output beam profiles readily interpreted as the interference between the emitted and the feedback fields, provided the output of the laser-diode system with optical feedback has sufficient temporal coherence. Observation of the interference pattern in the spatial beam profile, at an appropriate level of optical feedback, can be used to study the relative wave front of the optical feedback and emitted fields and to estimate coupling coefficients.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
    [CrossRef]
  2. C. E. Weiman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 11–20 (1991).
  3. D. M. Kane, A. P. Willis, “External-cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
    [CrossRef] [PubMed]
  4. T. Heumier, J. Satben, Department of Physics, Montana State University, Bozeman, Mont. (personal communication).
  5. R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
    [CrossRef]
  6. See, for example, W. T. Welford, Optics, 2nd ed. (Oxford U. Press, London, 1981), Chap. 3, pp. 37–42.
  7. E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
    [CrossRef]
  8. J. S. Lawrence, D. M. Kane, “Influence of angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
    [CrossRef]
  9. B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).
  10. J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
    [CrossRef]
  11. J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
    [CrossRef]
  12. We are preparing a manuscript to be called “Gaussian beam propagation in external cavity laser diodes.”
  13. D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
    [CrossRef]

1999 (1)

J. S. Lawrence, D. M. Kane, “Influence of angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

1997 (2)

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
[CrossRef]

1996 (1)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

1995 (2)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

D. M. Kane, A. P. Willis, “External-cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
[CrossRef] [PubMed]

1991 (1)

C. E. Weiman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 11–20 (1991).

1989 (1)

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

1987 (1)

B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).

1986 (1)

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Agrawal, G. P.

J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
[CrossRef]

Balle, S.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Fedyanina, E. L.

B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).

Heumier, T.

T. Heumier, J. Satben, Department of Physics, Montana State University, Bozeman, Mont. (personal communication).

Hollberg, L.

C. E. Weiman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 11–20 (1991).

Kane, D. M.

J. S. Lawrence, D. M. Kane, “Influence of angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

D. M. Kane, A. P. Willis, “External-cavity diode lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
[CrossRef] [PubMed]

Lawrence, J. S.

J. S. Lawrence, D. M. Kane, “Influence of angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

Li, E.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Mackenzie, M.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Marciante, J. R.

J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
[CrossRef]

Martin-Regalado, J.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

McInerney, J. G.

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

Osinski, M.

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

Park, J.-D.

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

Rinkevichyus, B. S.

B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).

San Miguel, M.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

Satben, J.

T. Heumier, J. Satben, Department of Physics, Montana State University, Bozeman, Mont. (personal communication).

Seo, D.-S.

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

Smirnov, V. I.

B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).

Tieu, K.

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

van Tartwijk, G. H. M.

J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
[CrossRef]

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

Weiman, C. E.

C. E. Weiman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 11–20 (1991).

Welford, W. T.

See, for example, W. T. Welford, Optics, 2nd ed. (Oxford U. Press, London, 1981), Chap. 3, pp. 37–42.

Willis, A. P.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. R. Marciante, G. H. M. van Tartwijk, G. P. Agrawal, “Spatial feedback effects in narrow-stripe index-guided semiconductor lasers,” IEEE J. Quantum Electron. 33, 469–473 (1997).
[CrossRef]

D.-S. Seo, J.-D. Park, J. G. McInerney, M. Osinski, “Multiple feedback effects in asymmetric external cavity semiconductor lasers,” IEEE J. Quantum Electron. 11, 2229–2239 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995).
[CrossRef]

J. Lightwave Technol. (1)

R. W. Tkach, A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4, 1655–1661 (1986).
[CrossRef]

Opt. Commun. (1)

J. S. Lawrence, D. M. Kane, “Influence of angular alignment of the optical feedback field on external cavity diode laser characteristics,” Opt. Commun. 159, 316–324 (1999).
[CrossRef]

Opt. Lasers Eng. (1)

E. Li, K. Tieu, M. Mackenzie, “Interference patterns of two focused Gaussian beams in an LDA measuring volume,” Opt. Lasers Eng. 27, 395–407 (1997).
[CrossRef]

Opt. Spectrosc. (1)

B. S. Rinkevichyus, V. I. Smirnov, E. L. Fedyanina, “Interference of Gaussian beams,” Opt. Spectrosc. 63, 340–343 (1987).

Phys. Rev. A (1)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, M. San Miguel, “Mode control and pattern stabilization in broad area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Weiman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 11–20 (1991).

Other (3)

T. Heumier, J. Satben, Department of Physics, Montana State University, Bozeman, Mont. (personal communication).

See, for example, W. T. Welford, Optics, 2nd ed. (Oxford U. Press, London, 1981), Chap. 3, pp. 37–42.

We are preparing a manuscript to be called “Gaussian beam propagation in external cavity laser diodes.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laser-diode system with a variable level of optical feedback. Output from the system can be monitored by transmission through the external mirror (i), the output from the external laser-diode facet (ii), or by use of an intracavity beam splitter to couple out a small fraction of the intracavity field (iii).

Fig. 2
Fig. 2

Schematic of the laser-diode system with optical feedback that was used to manipulate (a) the tilt angle, (b) the curvature and spot size, (c) the spatial extent of the optical feedback field.

Fig. 3
Fig. 3

Spatial beam profiles obtained for systematically increasing tilt angles [(a)–(d)] of the optical feedback field with respect to the emitted field. The LDWOF operates in the single longitudinal mode.

Fig. 4
Fig. 4

Visibility of the interference fringes as a function of coupling coefficient, which was calculated assuming a reflectance of 97% for the external mirror. This curve is applicable for tilt angles over the full range shown in Fig. 3.

Fig. 5
Fig. 5

Dependence of the visibility of the interference fringes on the temporal coherence of the output. The LDWOF system operates just inside regime IV in (a) and further inside in (b). The associated optical frequency spectrum of the output is shown as insets. The modes are those associated with the laser-diode longitudinal modes with ∼135 GHz spacing between modes.

Fig. 6
Fig. 6

Spatial beam profiles that show the effect of generating a spherical wave front for the optical feedback field of (a) a large radius of curvature and (b) a smaller radius of curvature. (c) When a plane wave of smaller spot size returns to the laser diode, a hot spot appears in the center of the spatial beam profile.

Fig. 7
Fig. 7

Spatial beam profiles showing the interference pattern associated with an apertured optical feedback field: (a) feedback of the central 2 mm of the output beam and (b) side of the beam as the feedback field.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fringe spacing=λ/2 sin θ=λ/2θ,
V=2E01E02/E012+E022,
E02=Rk E01,
V=Imax-IminImax+Imin=2Rk1+Rk.
Vmax=2R/1+R.

Metrics