Abstract

By using a continuous-wave Ti:sapphire laser as a pumping source, we demonstrated a passively Q-switched Yb:YAG laser at room temperature with Cr4+:YAG as the saturable absorber. We achieved an average output power of as much as 55 mW at 1.03 µm with a pulse width (FWHM) as short as 350 ns. The initial transmission of the Cr4+:YAG has an effect on the pulse duration (FWHM) and the repetition rate of the Yb:YAG passively Q-switched laser. The Yb:YAG crystal can be a most promising passively Q-switched laser crystal for compact, efficient, solid-state lasers.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, New York, 1992), Chap. 8.
    [CrossRef]
  2. J. A. Morris, C. R. Pollock, “Passive Q-switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
    [CrossRef] [PubMed]
  3. Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).
  4. S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
    [CrossRef]
  5. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
    [CrossRef] [PubMed]
  6. D. S. Sumida, T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1346 (1994).
    [CrossRef] [PubMed]
  7. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  8. S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
    [CrossRef]
  9. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).
  10. T. Y. Fan, S. Klunk, G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
    [CrossRef] [PubMed]
  11. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.
  12. J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
    [CrossRef]
  13. J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
    [CrossRef] [PubMed]
  14. H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
    [CrossRef]
  15. B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. QE-18, 925–930 (1982)
    [CrossRef]
  16. B. Peng, T. Izumitani, “Blue, green and 0.8 µm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 701–711 (1995).
    [CrossRef]
  17. J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
    [CrossRef]

1998 (1)

H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
[CrossRef]

1997 (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

1996 (1)

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

1995 (1)

B. Peng, T. Izumitani, “Blue, green and 0.8 µm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 701–711 (1995).
[CrossRef]

1994 (3)

1993 (3)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

T. Y. Fan, S. Klunk, G. Henein, “Diode-pumped Q-switched Yb:YAG laser,” Opt. Lett. 18, 423–425 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

1990 (1)

1988 (1)

S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
[CrossRef]

1982 (1)

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. QE-18, 925–930 (1982)
[CrossRef]

Aull, B. F.

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. QE-18, 925–930 (1982)
[CrossRef]

Baumaum, J. A.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Ben Amar-Baranga, A.

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

Borel, C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
[CrossRef]

Brovelli, L. R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

Burshtein, Z.

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

Bystrom, K. J.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Dalby, R. J.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Demchuk, M. I.

Deng, P.

H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
[CrossRef]

Dill, C.

Fan, T. Y.

Gan, F.

H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
[CrossRef]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Guide, T. S.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Harding, C. M.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Henein, G.

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Izumitani, T.

B. Peng, T. Izumitani, “Blue, green and 0.8 µm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 701–711 (1995).
[CrossRef]

Jenssen, H. P.

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. QE-18, 925–930 (1982)
[CrossRef]

Kalisky, Y.

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Kelley, P. L.

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Klunk, S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, New York, 1992), Chap. 8.
[CrossRef]

Kuleshov, N. V.

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Livshits, M. G.

Mikhailov, V. P.

Minkov, B. I.

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Morris, J. A.

Morris, R. C.

S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
[CrossRef]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Peng, B.

B. Peng, T. Izumitani, “Blue, green and 0.8 µm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 701–711 (1995).
[CrossRef]

Pollock, C. R.

Prokoshin, P. V.

Randles, M. H.

S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

Romero, R.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
[CrossRef]

Serreze, H. B.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Shepard, A. H.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Shimony, Y.

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

Solarz, R.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Souriau, J. C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
[CrossRef]

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Stokowski, S. E.

S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
[CrossRef]

Strauss, M.

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

D. S. Sumida, T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1346 (1994).
[CrossRef] [PubMed]

Walters, R. G.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Wyon, C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
[CrossRef]

Yellin, S. L.

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

Yin, H.

H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
[CrossRef]

Yumashev, K. V.

Zayhowski, J. J.

J. J. Zayhowski, C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19, 1427–1429 (1994).
[CrossRef] [PubMed]

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Zhavoronkov, N. I.

Appl. Phys. Lett. (1)

J. C. Souriau, R. Romero, C. Borel, C. Wyon, “Room-temperature dioide-pumped continuous-wave SrY4(SiO4)O:Yb3+,Er3+ crystal at 1554 nm,” Appl. Phys. Lett. 64, 1189–1191 (1994).
[CrossRef]

IEEE J. Quantum Electron. (7)

B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross section,” IEEE J. Quantum Electron. QE-18, 925–930 (1982)
[CrossRef]

J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben Amar-Baranga, Y. Kalisky, M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron.32, 305–310 (1996).

S. E. Stokowski, M. H. Randles, R. C. Morris, “Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers,” IEEE J. Quantum Electron. 24, 934–948 (1988).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

S. L. Yellin, A. H. Shepard, R. J. Dalby, J. A. Baumaum, H. B. Serreze, T. S. Guide, R. Solarz, K. J. Bystrom, C. M. Harding, R. G. Walters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 µm,” IEEE J. Quantum Electron. 29, 2058–2067 (1993).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 105–116 (1997).

J. Appl. Phys. (1)

H. Yin, P. Deng, F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83, 3825–3828 (1998).
[CrossRef]

Opt. Lett. (5)

Opt. Mater. (1)

B. Peng, T. Izumitani, “Blue, green and 0.8 µm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 701–711 (1995).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering, 3rd ed. (Springer-Verlag, New York, 1992), Chap. 8.
[CrossRef]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, U. Keller, L. R. Brovelli, C. Harder, E. Mix, G. Huber, “Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror,” in Advanced Solid-State Lasers, M. M. Fejier, H. Injeyan, U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1999), pp. 187–189.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a Ti:sapphire laser-pumped Yb:YAG passively Q-switched laser: M1, M2, cavity mirrors; M, monochromator, CCD, charge-coupled device array; SA, saturable absorber.

Fig. 2
Fig. 2

Energy levels of Yb3+ and Cr4+ and relaxation mechanisms. τ represents the lifetime of the 3 B 2 level.

Fig. 3
Fig. 3

Average output power, pulse energy, and peak power versus absorbed pump power for three Cr4+:YAG saturable absorbers with different small-signal transmissions.

Fig. 4
Fig. 4

Repetition rate and pulse width versus absorbed pump power for different Cr4+:YAG saturable absorbers with different small-signal transmissions.

Fig. 5
Fig. 5

Oscilloscope trace of a train of passively Q-switched pulses of Yb:YAG crystal with a repetition rate of approximately 14 kHz.

Fig. 6
Fig. 6

Oscilloscope trace of a single Q-switched pulse with a 350-ns pulse duration at 17-kHz repetition rate when the pump power is 720 mW for T 0 = 85% Cr4+:YAG.

Tables (1)

Tables Icon

Table 1 Material Properties of Yb3+:YAG Crystal

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tp=0.86trtγsat,rt δ1+δηδ-ln(1+δ),

Metrics