Abstract

The enhanced backscattering from organic laser gain media that are bounded with one-dimensional (1-D) and two-dimensional (2-D) rough metal films was investigated. We prepared several organic optical gain materials by doping laser-active dyes in matrices of acrylic polymers. These materials produced efficient and broadband fluorescence emission in the visible wavelengths during the pumping of a pulsed YAG or cw argon laser. These gain materials were sliced and coupled with 1-D or 2-D randomly rough gold films with large slopes. An experimental investigation was carried out with a He–Ne laser as the scattering source and the optical gain provided by a cw argon laser. The enhanced backscattering and the satellite peaks located about the enhanced-backscattering peak were obviously amplified, with their widths narrowed. These experimental results agree well with previous theoretical predictions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Celli, A. A. Maradudin, A. M. Marvin, A. R. McGurn, “Some aspects of light scattering from a randomly rough metal surface,” J. Opt. Soc. Am. A 2, 2225–2239 (1985).
    [CrossRef]
  2. E. R. Mendez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
    [CrossRef]
  3. Z. H. Gu, R. S. Dummer, A. A. Maradudin, A. R. McGurn, “Experimental study of the opposition effect in the scattering of light from a randomly rough metal surface,” Appl. Opt. 28, 537–543 (1989).
    [CrossRef] [PubMed]
  4. Z. H. Gu, J. Q. Lu, M. M. Tehrani, “Enhanced backscattering of polarized light at vacuum/dielectric interface,” Opt. Eng. 34, 1611–1624 (1995).
    [CrossRef]
  5. Z. H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
    [CrossRef] [PubMed]
  6. Z. H. Gu, M. Josse, M. Ciftan, “Observation of giant enhanced backscattering of light from weakly rough dielectric films on reflecting metal substrates,” Opt. Eng. 35, 370–375 (1996).
    [CrossRef]
  7. D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
    [CrossRef] [PubMed]
  8. A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
    [CrossRef]
  9. Z. H. Gu, G. D. Peng, “Amplification of enhanced backscattering from a dye-doped polymer bounded by a rough surface,” Opt. Lett. 25, 375–377 (2000).
    [CrossRef]
  10. A. Dubois, M. Canva, A. Brun, F. Chaput, J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996).
    [CrossRef] [PubMed]
  11. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  12. G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
    [CrossRef]
  13. F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]
  14. R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
    [CrossRef]
  15. A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 8.
  16. P. F. Gray, “A method of forming optical diffusers of sample known statistical properties,” Opt. Acta 25, 765–775 (1978).
    [CrossRef]

2000 (1)

1999 (1)

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

1996 (3)

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Z. H. Gu, M. Josse, M. Ciftan, “Observation of giant enhanced backscattering of light from weakly rough dielectric films on reflecting metal substrates,” Opt. Eng. 35, 370–375 (1996).
[CrossRef]

A. Dubois, M. Canva, A. Brun, F. Chaput, J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996).
[CrossRef] [PubMed]

1995 (3)

A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
[CrossRef] [PubMed]

D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
[CrossRef] [PubMed]

Z. H. Gu, J. Q. Lu, M. M. Tehrani, “Enhanced backscattering of polarized light at vacuum/dielectric interface,” Opt. Eng. 34, 1611–1624 (1995).
[CrossRef]

1994 (1)

1993 (2)

Z. H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
[CrossRef] [PubMed]

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

1989 (1)

1987 (1)

E. R. Mendez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

1985 (1)

1978 (1)

P. F. Gray, “A method of forming optical diffusers of sample known statistical properties,” Opt. Acta 25, 765–775 (1978).
[CrossRef]

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Boilot, J.-P.

Brun, A.

Canva, M.

Celli, V.

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Chaput, F.

Chu, P. L.

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Ciftan, M.

Z. H. Gu, M. Josse, M. Ciftan, “Observation of giant enhanced backscattering of light from weakly rough dielectric films on reflecting metal substrates,” Opt. Eng. 35, 370–375 (1996).
[CrossRef]

Duarte, F. J.

Dubois, A.

Dummer, R. S.

Gray, P. F.

P. F. Gray, “A method of forming optical diffusers of sample known statistical properties,” Opt. Acta 25, 765–775 (1978).
[CrossRef]

Gu, Z. H.

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

Josse, M.

Z. H. Gu, M. Josse, M. Ciftan, “Observation of giant enhanced backscattering of light from weakly rough dielectric films on reflecting metal substrates,” Opt. Eng. 35, 370–375 (1996).
[CrossRef]

Kaivola, M.

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
[CrossRef] [PubMed]

Leskova, T. A.

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

Lu, J. Q.

Z. H. Gu, J. Q. Lu, M. M. Tehrani, “Enhanced backscattering of polarized light at vacuum/dielectric interface,” Opt. Eng. 34, 1611–1624 (1995).
[CrossRef]

Z. H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
[CrossRef] [PubMed]

Maradudin, A. A.

Martinez, A.

Marvin, A. M.

Maslyukov, A.

Mayer, A. P.

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

McGurn, A. R.

Mendez, E. R.

Z. H. Gu, J. Q. Lu, A. A. Maradudin, A. Martinez, E. R. Mendez, “Coherence in the single and multiple scattering of light from randomly rough surfaces,” Appl. Opt. 32, 2852–2859 (1993).
[CrossRef] [PubMed]

E. R. Mendez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Nyholm, K.

O’Donnell, K. A.

E. R. Mendez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Peng, G. D.

Z. H. Gu, G. D. Peng, “Amplification of enhanced backscattering from a dye-doped polymer bounded by a rough surface,” Opt. Lett. 25, 375–377 (2000).
[CrossRef]

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Popov, S.

Sanchez-Gil, J. A.

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

Sokolov, S.

Tehrani, M. M.

Z. H. Gu, J. Q. Lu, M. M. Tehrani, “Enhanced backscattering of polarized light at vacuum/dielectric interface,” Opt. Eng. 34, 1611–1624 (1995).
[CrossRef]

Tutov, A. V.

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
[CrossRef] [PubMed]

Whitbread, T.

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
[CrossRef] [PubMed]

Xiong, Z.

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 8.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, “High efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63, 877–879 (1993).
[CrossRef]

J. Lightwave Technol. (1)

G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbread, R. P. Chaplin, “Dye-doped polymer optical fibre for broadband optical amplification,” J. Lightwave Technol. 14, 2215–2223 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

P. F. Gray, “A method of forming optical diffusers of sample known statistical properties,” Opt. Acta 25, 765–775 (1978).
[CrossRef]

Opt. Commun. (1)

E. R. Mendez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Opt. Eng. (2)

Z. H. Gu, J. Q. Lu, M. M. Tehrani, “Enhanced backscattering of polarized light at vacuum/dielectric interface,” Opt. Eng. 34, 1611–1624 (1995).
[CrossRef]

Z. H. Gu, M. Josse, M. Ciftan, “Observation of giant enhanced backscattering of light from weakly rough dielectric films on reflecting metal substrates,” Opt. Eng. 35, 370–375 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

A. V. Tutov, A. A. Maradudin, T. A. Leskova, A. P. Mayer, J. A. Sanchez-Gil, “The scattering of light from an amplifying medium bounded by a randomly rough surface,” Phys. Rev. B 60, 12,692–12,697 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

D. S. Wiersma, M. P. van Albada, A. Lagendijk, “Coherent backscattering of light from amplifying random media,” Phys. Rev. Lett. 75, 1739–1742 (1995).
[CrossRef] [PubMed]

Other (1)

A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic energy-level diagram of a laser dye. Direction markers 1–8 are defined in text.

Fig. 2
Fig. 2

Fluorescence spectra of the laser dye-doped optical gain polymers.

Fig. 3
Fig. 3

Sketch of the optical setup: BPF, bandpass filter.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup.

Fig. 5
Fig. 5

Far-field intensity measurement of a dye-doped 1-D gold film (a) with and (b) without a pump beam.

Fig. 6
Fig. 6

Comparison of the normalized backscattering and satellite peaks for the gain medium upon a 1-D gold surface.

Fig. 7
Fig. 7

Intensity measurements of a laser dye-doped 2-D gold rough surface (a) without and (b) with a pump beam.

Tables (1)

Tables Icon

Table 1 Dye-Doped Polymer Samples and Parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dIdz=dIdzstim,S1S0-dIdzabsor,S0S1-dIdzabsor,T1T2,T3, etc.,
dIdz=N1-N0g2g1λ2gν8πτn2 I=N1-N0g2g1λ4Eλ8πτcn2 I=γI,
γ=N1-N0g2g1λ4Eλ8πτcn2.
E=0 τsνανdν,
N=τ/hνsναν.
N1=τ/hνηνsναν.
γηνpsνpανpλs4Eλs8πcn2hνp.
Ez, t=Ezexpjkz-ωt,
n==1+12 j 21.
expjkz=expj 2πλ nz=expj 2πλz=expj 2πλ1z-πλ2z1=expjk1z-k2z.
I=I0 expγz=I0 exp-2k2z=I0 exp-2πλ21 z,
γ=-2k2=-2πλ21.

Metrics