Abstract

Confocal microscopy is used in the study of colloidal gels, glasses, and binary fluids. We measure the three-dimensional positions of colloidal particles with a precision of approximately 50 nm (a small fraction of each particle’s radius) and with a time resolution sufficient for tracking the thermal motions of several thousand particles at once. This information allows us to characterize the structure and the dynamics of these materials in qualitatively new ways, for example, by quantifying the topology of chains and clusters of particles as well as by measuring the spatial correlations between particles with high mobilities. We describe our experimental technique and describe measurements that complement the results of light scattering.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, B. R. Masters, “Confocal microscopy,” Appl. Opt. 33, 565–566 (1994).
    [CrossRef] [PubMed]
  2. A. van Blaaderen, P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
    [CrossRef]
  3. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
    [CrossRef]
  4. M. H. Chestnut, “Confocal microscopy of colloids,” Curr. Opin. Colloid Interface Sci. 2, 158–161 (1997).
    [CrossRef]
  5. W. K. Kegel, A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
    [CrossRef] [PubMed]
  6. U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
    [CrossRef]
  7. K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
    [CrossRef] [PubMed]
  8. A. van Blaaderen, “Imaging individual particles in concentrated colloidal dispersions by confocal scanning light microscopy,” Adv. Mater. 5, 52–54 (1993).
    [CrossRef]
  9. N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
    [CrossRef]
  10. P. N. Pusey, W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
    [CrossRef]
  11. W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).
  12. W. C. K. Poon, “Phase separation, aggregation and gelation in colloid–polymer mixtures and related systems,” Curr. Opin. Colloid Interface Sci. 3, 593–599 (1998).
    [CrossRef]
  13. S. Asakura, F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
    [CrossRef]
  14. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
    [CrossRef]
  15. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [CrossRef]
  16. W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
    [CrossRef]
  17. A. H. Krall, D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
    [CrossRef]
  18. P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
    [CrossRef]
  19. P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
    [CrossRef]
  20. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
  21. M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
    [CrossRef]
  22. M. Broide, R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
    [CrossRef] [PubMed]
  23. D. A. Weitz, M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
    [CrossRef] [PubMed]
  24. D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
    [CrossRef] [PubMed]
  25. L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
    [CrossRef] [PubMed]
  26. A. A. Potanin, W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
    [CrossRef]
  27. W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
    [CrossRef]
  28. S. Sinha, “Dynamic structure factors of a dense mixture,” Phys. Rev. E 49, 3504–3507 (1994).
    [CrossRef]
  29. B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
    [CrossRef]
  30. D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
    [CrossRef]
  31. L. V. Woodcock, “Glass-transition in the hard-sphere model and the Kauzmann paradox,” Ann. N. Y. Acad. Sci. 371, 274–298 (1981).
  32. B. J. Alder, T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
    [CrossRef]
  33. E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
    [CrossRef]
  34. W. van Megen, S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).
    [CrossRef]

2001 (1)

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

2000 (4)

W. K. Kegel, A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
[CrossRef] [PubMed]

U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
[CrossRef]

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

1999 (3)

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

1998 (2)

W. C. K. Poon, “Phase separation, aggregation and gelation in colloid–polymer mixtures and related systems,” Curr. Opin. Colloid Interface Sci. 3, 593–599 (1998).
[CrossRef]

A. H. Krall, D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
[CrossRef]

1997 (2)

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

M. H. Chestnut, “Confocal microscopy of colloids,” Curr. Opin. Colloid Interface Sci. 2, 158–161 (1997).
[CrossRef]

1996 (4)

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

A. A. Potanin, W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
[CrossRef]

M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
[CrossRef]

B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
[CrossRef]

1995 (2)

W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
[CrossRef]

A. van Blaaderen, P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

1994 (3)

W. van Megen, S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).
[CrossRef]

T. Wilson, B. R. Masters, “Confocal microscopy,” Appl. Opt. 33, 565–566 (1994).
[CrossRef] [PubMed]

S. Sinha, “Dynamic structure factors of a dense mixture,” Phys. Rev. E 49, 3504–3507 (1994).
[CrossRef]

1993 (4)

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
[CrossRef]

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

A. van Blaaderen, “Imaging individual particles in concentrated colloidal dispersions by confocal scanning light microscopy,” Adv. Mater. 5, 52–54 (1993).
[CrossRef]

1990 (1)

M. Broide, R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
[CrossRef] [PubMed]

1986 (2)

D. A. Weitz, M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
[CrossRef] [PubMed]

P. N. Pusey, W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[CrossRef]

1985 (1)

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

1983 (1)

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

1981 (1)

L. V. Woodcock, “Glass-transition in the hard-sphere model and the Kauzmann paradox,” Ann. N. Y. Acad. Sci. 371, 274–298 (1981).

1960 (1)

B. J. Alder, T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
[CrossRef]

1958 (1)

S. Asakura, F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
[CrossRef]

Alder, B. J.

B. J. Alder, T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
[CrossRef]

Asakura, S.

S. Asakura, F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
[CrossRef]

Asnaghi, D.

N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
[CrossRef]

Ball, R. C.

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

Bartsch, E.

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

Blaisten-Barojas, E.

M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
[CrossRef]

Botet, R.

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

Breedveld, V.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

Broide, M.

M. Broide, R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
[CrossRef] [PubMed]

Chestnut, M. H.

M. H. Chestnut, “Confocal microscopy of colloids,” Curr. Opin. Colloid Interface Sci. 2, 158–161 (1997).
[CrossRef]

Cipelletti, L.

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

Cohen, R.

M. Broide, R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
[CrossRef] [PubMed]

Courtemanche, D. J.

D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
[CrossRef]

Crocker, J. C.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Dassanayake, U.

U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
[CrossRef]

Dietrich, S.

B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
[CrossRef]

Dinsmore, A. D.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

Duits, M. H. G.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

Fraden, S.

U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
[CrossRef]

Frenz, V.

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

Gonzalez, A. E.

M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
[CrossRef]

Gotzelmann, B.

B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
[CrossRef]

Grier, D. G.

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Haase, A.

B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
[CrossRef]

Huang, J. S.

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

Ilett, S. M.

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

Jullien, R.

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

Kegel, W. K.

W. K. Kegel, A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
[CrossRef] [PubMed]

Krall, A. H.

A. H. Krall, D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
[CrossRef]

Lach-hab, M.

M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
[CrossRef]

Lekkerkerker, H. N. W.

N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
[CrossRef]

Levitt, A. C.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

Lin, K. H.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

Lin, M. Y.

D. A. Weitz, M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
[CrossRef] [PubMed]

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

Lubensky, T. C.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

Manley, S.

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

Masters, B. R.

Matteo, J. A.

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

Meakin, P.

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

Mellema, J.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

Moller, S.

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

Oosawa, F.

S. Asakura, F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
[CrossRef]

Pasmore, T. A.

D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
[CrossRef]

Pirie, A. D.

W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
[CrossRef]

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

Poon, W. C. K.

W. C. K. Poon, “Phase separation, aggregation and gelation in colloid–polymer mixtures and related systems,” Curr. Opin. Colloid Interface Sci. 3, 593–599 (1998).
[CrossRef]

W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
[CrossRef]

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

Potanin, A. A.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

A. A. Potanin, W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
[CrossRef]

Prasad, V.

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

Pusey, P. N.

W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
[CrossRef]

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

P. N. Pusey, W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[CrossRef]

Robertson, M. B.

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

Russel, W. B.

A. A. Potanin, W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
[CrossRef]

Schofield, A.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

Schofield, A. B.

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

Segre, P. N.

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

Selfe, J. S.

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

Silescu, H.

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

Sinha, S.

S. Sinha, “Dynamic structure factors of a dense mixture,” Phys. Rev. E 49, 3504–3507 (1994).
[CrossRef]

Sung, J.

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

Underwood, S. M.

W. van Megen, S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).
[CrossRef]

van Blaaderen, A.

W. K. Kegel, A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
[CrossRef] [PubMed]

U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
[CrossRef]

A. van Blaaderen, P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

A. van Blaaderen, “Imaging individual particles in concentrated colloidal dispersions by confocal scanning light microscopy,” Adv. Mater. 5, 52–54 (1993).
[CrossRef]

van den Ende, D.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

van Megen, W.

W. van Megen, S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).
[CrossRef]

P. N. Pusey, W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[CrossRef]

van Swol, F.

D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
[CrossRef]

Verhaegh, N. A. M.

N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
[CrossRef]

Wainright, T. E.

B. J. Alder, T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
[CrossRef]

Weeks, E. R.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

Weitz, D. A.

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

A. H. Krall, D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
[CrossRef]

D. A. Weitz, M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
[CrossRef] [PubMed]

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

Wientjes, R. H. W.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

Wilson, T.

Wiltzius, P.

A. van Blaaderen, P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

Wolthers, W.

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

Woodcock, L. V.

L. V. Woodcock, “Glass-transition in the hard-sphere model and the Kauzmann paradox,” Ann. N. Y. Acad. Sci. 371, 274–298 (1981).

Yodh, A. G.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

Adv. Mater. (1)

A. van Blaaderen, “Imaging individual particles in concentrated colloidal dispersions by confocal scanning light microscopy,” Adv. Mater. 5, 52–54 (1993).
[CrossRef]

Ann. N. Y. Acad. Sci. (1)

L. V. Woodcock, “Glass-transition in the hard-sphere model and the Kauzmann paradox,” Ann. N. Y. Acad. Sci. 371, 274–298 (1981).

Appl. Opt. (1)

Curr. Opin. Colloid Interface Sci. (2)

M. H. Chestnut, “Confocal microscopy of colloids,” Curr. Opin. Colloid Interface Sci. 2, 158–161 (1997).
[CrossRef]

W. C. K. Poon, “Phase separation, aggregation and gelation in colloid–polymer mixtures and related systems,” Curr. Opin. Colloid Interface Sci. 3, 593–599 (1998).
[CrossRef]

Faraday Discuss. (1)

W. C. K. Poon, A. D. Pirie, P. N. Pusey, “Gelation in colloid–polymer mixtures,” Faraday Discuss. 101, 65–76 (1995).
[CrossRef]

J. Chem. Phys. (2)

U. Dassanayake, S. Fraden, A. van Blaaderen, “Structure of electrorheological fluids,” J. Chem. Phys. 112, 3851–3858 (2000).
[CrossRef]

B. J. Alder, T. E. Wainright, “Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres,” J. Chem. Phys. 33, 1439–1451 (1960).
[CrossRef]

J. Colloid Interface Sci. (1)

J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

J. Phys. France (1)

W. C. K. Poon, J. S. Selfe, M. B. Robertson, S. M. Ilett, A. D. Pirie, P. N. Pusey, “An experimental study of a model colloid–polymer mixture,” J. Phys. France 3, 1075–1086 (1993).

J. Polym. Sci. (1)

S. Asakura, F. Oosawa, “Interaction between particles suspended in solutions of macromolecules,” J. Polym. Sci. 33, 183–191 (1958).
[CrossRef]

Mol. Phys. (1)

D. J. Courtemanche, T. A. Pasmore, F. van Swol, “A molecular dynamics study of prefreezing hard spheres at a smooth wall,” Mol. Phys. 80, 861–875 (1993).
[CrossRef]

Nature (1)

P. N. Pusey, W. van Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[CrossRef]

Phys. Rev. E (6)

W. van Megen, S. M. Underwood, “Glass transition in colloidal hard spheres: measurement and mode coupling–theory analysis of the coherent intermediate scattering function,” Phys. Rev. E 49, 4206–4220 (1994).
[CrossRef]

M. Lach-hab, A. E. Gonzalez, E. Blaisten-Barojas, “Concentration dependence of structural and dynamical quantities in colloidal aggregation: computer simulations,” Phys. Rev. E 54, 5456–5462 (1996).
[CrossRef]

A. A. Potanin, W. B. Russel, “Fractal model of consolidation of weakly aggregated colloidal dispersions,” Phys. Rev. E 53, 3702–3709 (1996).
[CrossRef]

W. Wolthers, D. van den Ende, V. Breedveld, M. H. G. Duits, A. A. Potanin, R. H. W. Wientjes, J. Mellema, “Linear viscoleastic behavior of aggregated colloidal dispersions,” Phys. Rev. E 56, 5726–5733 (1997).
[CrossRef]

S. Sinha, “Dynamic structure factors of a dense mixture,” Phys. Rev. E 49, 3504–3507 (1994).
[CrossRef]

B. Gotzelmann, A. Haase, S. Dietrich, “Structure factor of hard spheres near a wall,” Phys. Rev. E 53, 3456–3467 (1996).
[CrossRef]

Phys. Rev. Lett. (9)

M. Broide, R. Cohen, “Experimental evidence of dynamic scaling in colloidal aggregation,” Phys. Rev. Lett. 64, 2026–2029 (1990).
[CrossRef] [PubMed]

D. A. Weitz, M. Y. Lin, “Dynamic scaling of cluster-mass distributions in kinetic colloid aggregation,” Phys. Rev. Lett. 57, 2037–2040 (1986).
[CrossRef] [PubMed]

D. A. Weitz, J. S. Huang, M. Y. Lin, J. Sung, “Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids,” Phys. Rev. Lett. 54, 1416–1419 (1985).
[CrossRef] [PubMed]

L. Cipelletti, S. Manley, R. C. Ball, D. A. Weitz, “Universal aging features in restructuring of fractal colloidal gels,” Phys. Rev. Lett. 84, 2275–2278 (2000).
[CrossRef] [PubMed]

J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352–4355 (1999).
[CrossRef]

A. H. Krall, D. A. Weitz, “Internal dynamics and elasticity of fractal colloidal gels,” Phys. Rev. Lett. 80, 778–781 (1998).
[CrossRef]

P. N. Segre, V. Prasad, A. B. Schofield, D. A. Weitz, “Glass-like kinetic arrest at the colloidal gelation transition,” Phys. Rev. Lett. 86, 6042–6045 (2001).
[CrossRef]

P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
[CrossRef]

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, A. G. Yodh, “Entropically driven colloidal crystallization on patterned surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[CrossRef] [PubMed]

Physica A (2)

N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerkerker, “Transient gels in colloid–polymer mixtures studied with fluorescence confocal scanning laser microscopy,” Physica A 264, 64–74 (1999).
[CrossRef]

E. Bartsch, V. Frenz, S. Moller, H. Silescu, “Colloidal polystyrene micronetwork spheres—a new mesoscopic model of the glass transition in simple liquids,” Physica A 201, 363–371 (1993).
[CrossRef]

Science (3)

W. K. Kegel, A. van Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science 287, 290–292 (2000).
[CrossRef] [PubMed]

A. van Blaaderen, P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–630 (1999).
[CrossRef]

Other (1)

R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Plot of the field autocorrelation functions of light scattered from two colloidal suspensions. Open circles, colloidal fluid (ϕ = 0.02, U = 0); open squares, colloidal gel (ϕ = 0.085, U = 16.5k B T, R g /R = 0.06). The scattering angle is 60° (q = 1.8 × 105 cm-1), which lies between the high-q and the low-q peaks in the structure factor of the gel.

Fig. 2
Fig. 2

Confocal microscope image of a colloidal gel. The image is a projection over a depth of 1.6 µm. The particles, visible as white spots, are 0.35 µm in radius, and ϕ = 0.031. The polystyrene polymers, which make the particles aggregate (U = 8.4k B T), are not visible.

Fig. 3
Fig. 3

Pair distribution function g(r) of a colloidal gel, measured by three-dimensional confocal imaging; r is the distance from the center of a particle, and R is the particle radius. The sample is the same as in Fig. 2, and the data are averaged over 20,000 particles. Inset, log–log plot of the same data, showing power-law scaling. The line has a slope of -1.24, which leads to a fractal dimension D f = 1.76. The peaks near the origin are due to bonding with other particles.

Fig. 4
Fig. 4

Distribution of the number of bonds per particle n b obtained by three-dimensional confocal imaging. This is the same sample as in Fig. 2; 7335 particles are included in this plot. Inset, spatial correlation of n b versus separation between particles (R = 0.35 µm); 1300 particles are included in this plot. The lack of significant correlation beyond nearest neighbors indicates the absence of a characteristic mesh size, of long, single chains, or of a chain–blob morphology.

Fig. 5
Fig. 5

Confocal microscope image of a pair of 2.1-µm-diameter spheres surrounded by 0.5-µm-diameter spheres. The pronounced layering of the smaller spheres gives rise to the depletion repulsion. The volume fractions of the larger and the smaller spheres are 0.24 and 0.28, respectively.

Fig. 6
Fig. 6

Locations of the fast particles (large spheres, drawn to scale) and the other particles (smaller spheres, not to scale) in a supercooled fluid sample (ϕ = 0.56). This is a snapshot from the sample in Fig. 7(a) below at t = 40 min.

Fig. 7
Fig. 7

Measured percentage of the sample that is fast as a function of time for (a) a supercooled fluid (ϕ = 0.56) and (b) a colloidal glass (ϕ = 0.60). The definition of fast is chosen to select, on average, the 5% of particles with the largest displacements during time interval Δt*. Horizontal bars, time scale Δt*; dashed lines, time-averaged population of fast particles. The large fluctuations in the supercooled sample are not seen in the glass sample.

Metrics