Abstract

Surface light-scattering measurements have been carried out on thin asymmetric films of pentane on water. We vary the film thickness ℓ over a wide range (10-9 m < ℓ < 10-5 m). Compared with the ripplons wavelength 1/q, thick films of pentane (ℓ ≫ 1/q) display the same power spectrum as a pure pentane–vapor interface: a single peak. When thinning the film down to ℓ ≈ 1/q, hydrodynamic coupling between the layers of the interface is revealed by the appearance of a second peak beside the first one. We describe the thickness dependence of the two coupled modes through variations of the positions, the widths, and the amplitudes of both peaks.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
    [CrossRef]
  2. J. G. H. Joosten, “Light scattering in thin liquid films,” in Thin Liquid Films: Fundamentals and Applications, I. Ivanov, ed. (Marcel Dekker, New York, 1988), Chap. 9, pp. 569–662, and references therein.
  3. A. Vrij, H. Fijnaut, “Light scattering from thin liquid films,” Adv. Chem. Phys. 48, 329–396 (1981).
  4. R. Lipowsky, “The conformation of membranes,” Nature 349, 475–481 (1991).
    [CrossRef] [PubMed]
  5. U. Seifert, “Configuration of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997), and references therein.
  6. H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
    [CrossRef] [PubMed]
  7. R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
    [CrossRef]
  8. C. J. Boulter, “When is short range critical wetting not critical?” Phys. Rev. Lett. 79, 1897–1900 (1997).
    [CrossRef]
  9. D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.
  10. O. Krichevsky, J. Stavans, “Micellar stratification in soap films: a light scattering study,” Phys. Rev. Lett. 74, 2752–2755 (1995).
    [CrossRef] [PubMed]
  11. W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
    [CrossRef]
  12. A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th ed. (Wiley, New York, 1997),Chap. 6, pp. 232–259.
  13. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, London, 1991).
  14. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).
  15. M. Krech, The Critical Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).
    [CrossRef]
  16. A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
    [CrossRef] [PubMed]
  17. A. Mukhodapay, B. Law, “Critical Casimir effect in binary wetting films,” Phys. Rev. Lett. 83, 772–775 (1999).
    [CrossRef]
  18. R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of 4He films near the superfluid transition,” Phys. Rev. Lett. 83, 1187–1190 (1999).
    [CrossRef]
  19. A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
    [CrossRef]
  20. K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
    [CrossRef]
  21. M. V. Smoluchowski, “Molekular-Kinetische Theorie der Opaleszenz von Gasen im kritischem Zustande sowie einiger verwandte Erscheinungen,” Ann. Phys. (Leipzig) 25, 205–226 (1908).
    [CrossRef]
  22. L. I. Mandelshtamm, “Uber die Rauhigkeit freier Flussigkeitoberflchen,” Ann. Phys. (Leipzig) 35, 609–624 (1918).
  23. C. V. Raman, L. A. Ramdas, “The scattering of light by liquid boundaries and its relation to surface tension,” Proc. R. Soc. London 109, 272–279 (1925).
    [CrossRef]
  24. J. Meunier, “Diffusion de la lumiere par les ondes de surface sur CO2 pres du point critique mesure de la tension superficielle,” J. Phys. (Paris) 30, 933–942 (1969).
    [CrossRef]
  25. M. Bouchiat, J. Meunier, “Spectre des fluctuations thermiques de la surface libre d’un liquide simple,” J. Phys. (Paris) 32, 561–571 (1971).
    [CrossRef]
  26. W. Meyer, G. H. Wegdam, D. Fenistein, J. A. Mann, “Advances in surface light-scattering instrumentation and analysis: noninvasive measurement of surface tension, viscosity, and other parameters,” Appl. Opt. 40, 4113–4133 (2001).
    [CrossRef]
  27. R. Edwards, R. S. Sirohi, J. A. Mann, L. B. Shih, L. Lading, “Surface fluctuation scattering using grating heterodyne spectroscopy,” Appl. Opt. 21, 3555–3568 (1982).
    [CrossRef] [PubMed]
  28. H. Lamb, Hydrodynamics, 6th ed. (Cambridge U. Press, Cambridge, 1932), Chap. 9, pp. 227–475.
  29. L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).
  30. J. Wehausen, E. Laitone, “Surface waves,” in Handbuch der Physik, S. Flugge, ed. (Springer-Verlag, Berlin, 1960), pp. 446–778.
  31. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).
  32. R. Katyl, U. Ingard, “Line broadening of light scattered from a liquid interface,” Phys. Rev. Lett. 19, 64–66 (1967).
    [CrossRef]
  33. J. A. Mann, R. Edwards, “Surface fluctuation spectroscopy: comments on experimental technique and capillary ripple theory,” Rev. Sci. Instrum. 55, 727–731 (1984).
    [CrossRef]
  34. J. Meunier, Laboratorie de Physique Statistique, Ecole Normale Superierue, 24 Rue Lhomand, 75231 Paris Cedex 05, France (personal communication, 10December2000).

2001 (1)

2000 (1)

A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
[CrossRef] [PubMed]

1999 (4)

A. Mukhodapay, B. Law, “Critical Casimir effect in binary wetting films,” Phys. Rev. Lett. 83, 772–775 (1999).
[CrossRef]

R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of 4He films near the superfluid transition,” Phys. Rev. Lett. 83, 1187–1190 (1999).
[CrossRef]

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.

1998 (2)

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

1997 (2)

C. J. Boulter, “When is short range critical wetting not critical?” Phys. Rev. Lett. 79, 1897–1900 (1997).
[CrossRef]

U. Seifert, “Configuration of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997), and references therein.

1995 (1)

O. Krichevsky, J. Stavans, “Micellar stratification in soap films: a light scattering study,” Phys. Rev. Lett. 74, 2752–2755 (1995).
[CrossRef] [PubMed]

1992 (1)

H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
[CrossRef] [PubMed]

1991 (2)

W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
[CrossRef]

R. Lipowsky, “The conformation of membranes,” Nature 349, 475–481 (1991).
[CrossRef] [PubMed]

1984 (1)

J. A. Mann, R. Edwards, “Surface fluctuation spectroscopy: comments on experimental technique and capillary ripple theory,” Rev. Sci. Instrum. 55, 727–731 (1984).
[CrossRef]

1983 (1)

R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
[CrossRef]

1982 (1)

1981 (1)

A. Vrij, H. Fijnaut, “Light scattering from thin liquid films,” Adv. Chem. Phys. 48, 329–396 (1981).

1971 (1)

M. Bouchiat, J. Meunier, “Spectre des fluctuations thermiques de la surface libre d’un liquide simple,” J. Phys. (Paris) 32, 561–571 (1971).
[CrossRef]

1969 (1)

J. Meunier, “Diffusion de la lumiere par les ondes de surface sur CO2 pres du point critique mesure de la tension superficielle,” J. Phys. (Paris) 30, 933–942 (1969).
[CrossRef]

1967 (1)

R. Katyl, U. Ingard, “Line broadening of light scattered from a liquid interface,” Phys. Rev. Lett. 19, 64–66 (1967).
[CrossRef]

1948 (1)

H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

1925 (1)

C. V. Raman, L. A. Ramdas, “The scattering of light by liquid boundaries and its relation to surface tension,” Proc. R. Soc. London 109, 272–279 (1925).
[CrossRef]

1918 (1)

L. I. Mandelshtamm, “Uber die Rauhigkeit freier Flussigkeitoberflchen,” Ann. Phys. (Leipzig) 35, 609–624 (1918).

1908 (1)

M. V. Smoluchowski, “Molekular-Kinetische Theorie der Opaleszenz von Gasen im kritischem Zustande sowie einiger verwandte Erscheinungen,” Ann. Phys. (Leipzig) 25, 205–226 (1908).
[CrossRef]

Adamson, A.

A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th ed. (Wiley, New York, 1997),Chap. 6, pp. 232–259.

Binks, B. P.

H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
[CrossRef] [PubMed]

Bonn, D.

D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

Bouchiat, M.

M. Bouchiat, J. Meunier, “Spectre des fluctuations thermiques de la surface libre d’un liquide simple,” J. Phys. (Paris) 32, 561–571 (1971).
[CrossRef]

Boulter, C. J.

C. J. Boulter, “When is short range critical wetting not critical?” Phys. Rev. Lett. 79, 1897–1900 (1997).
[CrossRef]

Broseta, D.

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

Casimir, H. B. G.

H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

Chan, M. H. W.

R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of 4He films near the superfluid transition,” Phys. Rev. Lett. 83, 1187–1190 (1999).
[CrossRef]

Dietrich, S.

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

Doerr, A. K.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Drzewinski, A.

A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
[CrossRef] [PubMed]

Ducker, W.

W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
[CrossRef]

Edwards, R.

J. A. Mann, R. Edwards, “Surface fluctuation spectroscopy: comments on experimental technique and capillary ripple theory,” Rev. Sci. Instrum. 55, 727–731 (1984).
[CrossRef]

R. Edwards, R. S. Sirohi, J. A. Mann, L. B. Shih, L. Lading, “Surface fluctuation scattering using grating heterodyne spectroscopy,” Appl. Opt. 21, 3555–3568 (1982).
[CrossRef] [PubMed]

Eisenriegler, E.

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

Evans, R.

A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
[CrossRef] [PubMed]

Fenistein, D.

Fijnaut, H.

A. Vrij, H. Fijnaut, “Light scattering from thin liquid films,” Adv. Chem. Phys. 48, 329–396 (1981).

Garcia, R.

R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of 4He films near the superfluid transition,” Phys. Rev. Lett. 83, 1187–1190 (1999).
[CrossRef]

Gast, A.

A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th ed. (Wiley, New York, 1997),Chap. 6, pp. 232–259.

Hanke, A.

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

Indekeu, J. O.

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

Ingard, U.

R. Katyl, U. Ingard, “Line broadening of light scattered from a liquid interface,” Phys. Rev. Lett. 19, 64–66 (1967).
[CrossRef]

Israelachvili, J. N.

J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, London, 1991).

Joosten, J. G. H.

J. G. H. Joosten, “Light scattering in thin liquid films,” in Thin Liquid Films: Fundamentals and Applications, I. Ivanov, ed. (Marcel Dekker, New York, 1988), Chap. 9, pp. 569–662, and references therein.

Katyl, R.

R. Katyl, U. Ingard, “Line broadening of light scattered from a liquid interface,” Phys. Rev. Lett. 19, 64–66 (1967).
[CrossRef]

Kellay, H.

H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
[CrossRef] [PubMed]

Krech, M.

M. Krech, The Critical Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).
[CrossRef]

Krichevsky, O.

O. Krichevsky, J. Stavans, “Micellar stratification in soap films: a light scattering study,” Phys. Rev. Lett. 74, 2752–2755 (1995).
[CrossRef] [PubMed]

Kroll, D.

R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
[CrossRef]

Lading, L.

Laitone, E.

J. Wehausen, E. Laitone, “Surface waves,” in Handbuch der Physik, S. Flugge, ed. (Springer-Verlag, Berlin, 1960), pp. 446–778.

Lamb, H.

H. Lamb, Hydrodynamics, 6th ed. (Cambridge U. Press, Cambridge, 1932), Chap. 9, pp. 227–475.

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).

Langevin, D.

D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

Law, B.

A. Mukhodapay, B. Law, “Critical Casimir effect in binary wetting films,” Phys. Rev. Lett. 83, 772–775 (1999).
[CrossRef]

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).

Lipowsky, R.

R. Lipowsky, “The conformation of membranes,” Nature 349, 475–481 (1991).
[CrossRef] [PubMed]

R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
[CrossRef]

Maciolek, A.

A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
[CrossRef] [PubMed]

Mandelshtamm, L. I.

L. I. Mandelshtamm, “Uber die Rauhigkeit freier Flussigkeitoberflchen,” Ann. Phys. (Leipzig) 35, 609–624 (1918).

Mann, J. A.

Meunier, J.

D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
[CrossRef] [PubMed]

M. Bouchiat, J. Meunier, “Spectre des fluctuations thermiques de la surface libre d’un liquide simple,” J. Phys. (Paris) 32, 561–571 (1971).
[CrossRef]

J. Meunier, “Diffusion de la lumiere par les ondes de surface sur CO2 pres du point critique mesure de la tension superficielle,” J. Phys. (Paris) 30, 933–942 (1969).
[CrossRef]

J. Meunier, Laboratorie de Physique Statistique, Ecole Normale Superierue, 24 Rue Lhomand, 75231 Paris Cedex 05, France (personal communication, 10December2000).

Meyer, W.

Mukhodapay, A.

A. Mukhodapay, B. Law, “Critical Casimir effect in binary wetting films,” Phys. Rev. Lett. 83, 772–775 (1999).
[CrossRef]

Pashley, R.

W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
[CrossRef]

Prange, W.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Press, W.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Ragil, K.

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

Raman, C. V.

C. V. Raman, L. A. Ramdas, “The scattering of light by liquid boundaries and its relation to surface tension,” Proc. R. Soc. London 109, 272–279 (1925).
[CrossRef]

Ramdas, L. A.

C. V. Raman, L. A. Ramdas, “The scattering of light by liquid boundaries and its relation to surface tension,” Proc. R. Soc. London 109, 272–279 (1925).
[CrossRef]

Ross, D.

D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.

Schlomka, J.-P.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Sclessener, F.

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

Seifert, U.

U. Seifert, “Configuration of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997), and references therein.

Senden, T.

W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
[CrossRef]

Seydel, T.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Shih, L. B.

Sirohi, R. S.

Smilgies, D.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Smoluchowski, M. V.

M. V. Smoluchowski, “Molekular-Kinetische Theorie der Opaleszenz von Gasen im kritischem Zustande sowie einiger verwandte Erscheinungen,” Ann. Phys. (Leipzig) 25, 205–226 (1908).
[CrossRef]

Stavans, J.

O. Krichevsky, J. Stavans, “Micellar stratification in soap films: a light scattering study,” Phys. Rev. Lett. 74, 2752–2755 (1995).
[CrossRef] [PubMed]

Struth, B.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Tolan, M.

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

Vrij, A.

A. Vrij, H. Fijnaut, “Light scattering from thin liquid films,” Adv. Chem. Phys. 48, 329–396 (1981).

Wegdam, G. H.

Wehausen, J.

J. Wehausen, E. Laitone, “Surface waves,” in Handbuch der Physik, S. Flugge, ed. (Springer-Verlag, Berlin, 1960), pp. 446–778.

Zia, K. R. P.

R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
[CrossRef]

Adv. Chem. Phys. (1)

A. Vrij, H. Fijnaut, “Light scattering from thin liquid films,” Adv. Chem. Phys. 48, 329–396 (1981).

Adv. Phys. (1)

U. Seifert, “Configuration of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997), and references therein.

Ann. Phys. (Leipzig) (2)

M. V. Smoluchowski, “Molekular-Kinetische Theorie der Opaleszenz von Gasen im kritischem Zustande sowie einiger verwandte Erscheinungen,” Ann. Phys. (Leipzig) 25, 205–226 (1908).
[CrossRef]

L. I. Mandelshtamm, “Uber die Rauhigkeit freier Flussigkeitoberflchen,” Ann. Phys. (Leipzig) 35, 609–624 (1918).

Appl. Opt. (2)

J. Phys. (Paris) (2)

J. Meunier, “Diffusion de la lumiere par les ondes de surface sur CO2 pres du point critique mesure de la tension superficielle,” J. Phys. (Paris) 30, 933–942 (1969).
[CrossRef]

M. Bouchiat, J. Meunier, “Spectre des fluctuations thermiques de la surface libre d’un liquide simple,” J. Phys. (Paris) 32, 561–571 (1971).
[CrossRef]

Nature (3)

R. Lipowsky, “The conformation of membranes,” Nature 349, 475–481 (1991).
[CrossRef] [PubMed]

D. Ross, D. Bonn, J. Meunier, “Observation of short range critical wetting,” Nature 400, 737–739 (1999), and references therein.

W. Ducker, T. Senden, R. Pashley, “Direct measurement of colloidal forces using an atomic force microscope,” Nature 353, 239–241 (1991).
[CrossRef]

Phys. Rev. B (1)

R. Lipowsky, D. Kroll, K. R. P. Zia, “Effective field theory for interface delocalization transitions,” Phys. Rev. B 27, 4499–4502 (1983).
[CrossRef]

Phys. Rev. Lett. (10)

C. J. Boulter, “When is short range critical wetting not critical?” Phys. Rev. Lett. 79, 1897–1900 (1997).
[CrossRef]

H. Kellay, J. Meunier, B. P. Binks, “Wetting properties of n-alkanes on AOT monolayers at the brine–air interface,” Phys. Rev. Lett. 69, 1220–1223 (1992).
[CrossRef] [PubMed]

A. K. Doerr, M. Tolan, W. Prange, J.-P. Schlomka, T. Seydel, W. Press, D. Smilgies, B. Struth, “Observation of capillary waves in thin liquid films from mesoscopic to atomic length scales,” Phys. Rev. Lett. 83, 3470–3473 (1999).
[CrossRef]

O. Krichevsky, J. Stavans, “Micellar stratification in soap films: a light scattering study,” Phys. Rev. Lett. 74, 2752–2755 (1995).
[CrossRef] [PubMed]

A. Drzewinski, A. Maciolek, R. Evans, “Influence of capillary condensation on the near-critical solvation force,” Phys. Rev. Lett. 85, 3079–3082 (2000).
[CrossRef] [PubMed]

A. Mukhodapay, B. Law, “Critical Casimir effect in binary wetting films,” Phys. Rev. Lett. 83, 772–775 (1999).
[CrossRef]

R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of 4He films near the superfluid transition,” Phys. Rev. Lett. 83, 1187–1190 (1999).
[CrossRef]

A. Hanke, F. Sclessener, E. Eisenriegler, S. Dietrich, “Critical Casimir forces between spherical particles in fluids,” Phys. Rev. Lett. 81, 1885–1888 (1998).
[CrossRef]

K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, D. Bonn, “Experimental observation of critical wetting,” Phys. Rev. Lett. 77, 1532–1535 (1998).
[CrossRef]

R. Katyl, U. Ingard, “Line broadening of light scattered from a liquid interface,” Phys. Rev. Lett. 19, 64–66 (1967).
[CrossRef]

Proc. K. Ned. Akad. Wet. (1)

H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793–795 (1948).

Proc. R. Soc. London (1)

C. V. Raman, L. A. Ramdas, “The scattering of light by liquid boundaries and its relation to surface tension,” Proc. R. Soc. London 109, 272–279 (1925).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Mann, R. Edwards, “Surface fluctuation spectroscopy: comments on experimental technique and capillary ripple theory,” Rev. Sci. Instrum. 55, 727–731 (1984).
[CrossRef]

Other (9)

J. Meunier, Laboratorie de Physique Statistique, Ecole Normale Superierue, 24 Rue Lhomand, 75231 Paris Cedex 05, France (personal communication, 10December2000).

M. Krech, The Critical Casimir Effect in Critical Systems (World Scientific, Singapore, 1994).
[CrossRef]

H. Lamb, Hydrodynamics, 6th ed. (Cambridge U. Press, Cambridge, 1932), Chap. 9, pp. 227–475.

L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1959).

J. Wehausen, E. Laitone, “Surface waves,” in Handbuch der Physik, S. Flugge, ed. (Springer-Verlag, Berlin, 1960), pp. 446–778.

D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th ed. (Wiley, New York, 1997),Chap. 6, pp. 232–259.

J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, London, 1991).

J. G. H. Joosten, “Light scattering in thin liquid films,” in Thin Liquid Films: Fundamentals and Applications, I. Ivanov, ed. (Marcel Dekker, New York, 1988), Chap. 9, pp. 569–662, and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Power spectra measured at T = 53.570 °C with (a) q 1 = 110000 m-1 and (b) q 2 = 55000 m-1; at T = 54.590 °C with (c) q 1 = 110000 m-1 and (d) q 2 = 55000 m-1; at T = 54.890 °C with (e) q 1= 110000 m-1 and (f) q 2= 55000 m-1; and at T = 57.700 °C with (g) q 1 = 110000 m-1 and (h) q 2 = 55000 m-1.

Fig. 2
Fig. 2

Positions of the peaks that were measured at q 1 = 110000 m-1 (open symbols) and q 2 = 55000 m-1 (filled symbols) versus (a) the temperature and (b) qℓ. The curves in (b) are plotted for comparison and represent expression (3) (solid curve) and expression (4) (dashed curve).

Fig. 3
Fig. 3

Ratio of the amplitudes of the two peaks, A s /A b , measured at q 1 = 110000 m-1 (open symbols) and q 2 = 55000 m-1 (filled symbols) plotted versus (a) the temperature and (b) qℓ. The arrow indicates the position of S pw/S pv, the ratio of the scattering contrast of the water–pentane to the pentane–vapor interface.

Fig. 4
Fig. 4

FWHM of the lower peak (the squeezing mode) measured at q 1 = 110000 m-1 (open symbols) and q 2 = 55000 m-1 (filled symbols) plotted versus (a) the temperature and (b) qℓ. The term FWHM p denotes the width of a single pentane–vapor interface.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ωc2=σρ1+ρ2 q3+ρ1-ρ2ρ1+ρ2 gq,
=2η1+η2ρ1+ρ2 q2.
S1/2=n1-n2n1+n2,  nw1.333,  np1.356, nv1.00
ωsqueez/ωptanhq,
ωbend/ωpA-B* tanhq.

Metrics