Abstract

We numerically calculate the light scattering intensity fluctuations and the cross-polarization intensity fluctuations of optically soft spherical particles containing an eccentrically located spherical particle. In all cases the magnitude of the signals tends to increase with particle asymmetry. Such a system approximates a biological cell in solution.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.
  2. P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., NATO ASI Ser. B23, 45–141 (1977).
  3. E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of the scattered waves,” Adv. Phys. 37, 471–529 (1988).
    [CrossRef]
  4. T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
    [CrossRef]
  5. E. Jakeman, “Polarisation fluctuations in radiation scattered by small particles,” Waves Random Media 5, 427–442 (1995).
    [CrossRef]
  6. A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 3372–3378 (1997).
    [CrossRef]
  7. E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered from particulate surfaces: interacting particles and non-Gaussian effects,” Opt. Commun. 181, 231–238 (2000).
    [CrossRef]
  8. G. Videen, D. Ngo, “Light scattering multipole solution for a cell,” J. Biomed. Opt. 3, 212–220 (1998).
    [CrossRef] [PubMed]
  9. D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, G. Videen, “Light scattering from deformed droplets and droplets with inclusions. I. Experimental results,” Appl. Opt. 39, 5023–5030 (2000).
    [CrossRef]
  10. G. Videen, W. Sun, Q. Fu, D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, “Light scattering from deformed droplets and droplets with inclusions. I. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
    [CrossRef]
  11. D. R. Prabhu, M. Davies, G. Videen, “Light scattering calculations from oleic-acid droplets with water inclusions,” Opt. Express 8, 308–313 (2001).
    [CrossRef] [PubMed]
  12. G. Videen, P. Pellegrino, D. Ngo, P. Nachman, R. G. Pinnick, “Qualitative light-scattering angular correlations of conglomerate particles,” Appl. Opt. 36, 3532–3537 (1997).
    [CrossRef] [PubMed]
  13. P. Pellegrino, G. Videen, R. G. Pinnick, “Quantitative light-scattering angular correlations of conglomerate particles,” Appl. Opt. 36, 7672–7677 (1997).
    [CrossRef]
  14. U. K. Krieger, C. Braun, “Light-scattering intensity fluctuations in single aerosol particles during deliquiescence,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  15. G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, R. G. Pinnick, “Light scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115–6118 (1997).
    [CrossRef] [PubMed]
  16. G. Shu, T. T. Charalampopoulos, “Reciprocity theorem for the calculation of average scattering properties of agglomerated particles,” Appl. Opt. 39, 5827–5833 (2000).
    [CrossRef]

2001 (1)

2000 (4)

1998 (1)

G. Videen, D. Ngo, “Light scattering multipole solution for a cell,” J. Biomed. Opt. 3, 212–220 (1998).
[CrossRef] [PubMed]

1997 (4)

1996 (1)

T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
[CrossRef]

1995 (1)

E. Jakeman, “Polarisation fluctuations in radiation scattered by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

1988 (1)

E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of the scattered waves,” Adv. Phys. 37, 471–529 (1988).
[CrossRef]

Bartley, D. L.

Bates, A. P.

Braun, C.

U. K. Krieger, C. Braun, “Light-scattering intensity fluctuations in single aerosol particles during deliquiescence,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Charalampopoulos, T. T.

Davies, M.

Faulkner, T. R.

T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
[CrossRef]

Fu, Q.

González, F.

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered from particulate surfaces: interacting particles and non-Gaussian effects,” Opt. Commun. 181, 231–238 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.

Greenaway, R. S.

Hirst, E.

Hopcraft, K. I.

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 3372–3378 (1997).
[CrossRef]

T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
[CrossRef]

Jakeman, E.

A. P. Bates, K. I. Hopcraft, E. Jakeman, “Particle shape determination from polarization fluctuations of scattered radiation,” J. Opt. Soc. Am. A 14, 3372–3378 (1997).
[CrossRef]

E. Jakeman, “Polarisation fluctuations in radiation scattered by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of the scattered waves,” Adv. Phys. 37, 471–529 (1988).
[CrossRef]

Kaye, P. H.

Krieger, U. K.

U. K. Krieger, C. Braun, “Light-scattering intensity fluctuations in single aerosol particles during deliquiescence,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Moreno, F.

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered from particulate surfaces: interacting particles and non-Gaussian effects,” Opt. Commun. 181, 231–238 (2000).
[CrossRef]

Nachman, P.

Ngo, D.

Ortiz, E. M.

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered from particulate surfaces: interacting particles and non-Gaussian effects,” Opt. Commun. 181, 231–238 (2000).
[CrossRef]

Pellegrino, P.

Pinnick, R. G.

Prabhu, D. R.

Pusey, P. N.

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., NATO ASI Ser. B23, 45–141 (1977).

Secker, D. R.

Shu, G.

Sun, W.

Tough, R. J. A.

E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of the scattered waves,” Adv. Phys. 37, 471–529 (1988).
[CrossRef]

Videen, G.

Videen, J. S.

Watts, T. R.

T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
[CrossRef]

Adv. Phys. (1)

E. Jakeman, R. J. A. Tough, “Non-Gaussian models for the statistics of the scattered waves,” Adv. Phys. 37, 471–529 (1988).
[CrossRef]

Appl. Opt. (6)

J. Biomed. Opt. (1)

G. Videen, D. Ngo, “Light scattering multipole solution for a cell,” J. Biomed. Opt. 3, 212–220 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

T. R. Watts, K. I. Hopcraft, T. R. Faulkner, “Single measurements on probability density functions and their use in non-Gaussian light scattering,” J. Phys. A 29, 7501–7517 (1996).
[CrossRef]

Opt. Commun. (1)

E. M. Ortiz, F. González, F. Moreno, “Intensity statistics of the light scattered from particulate surfaces: interacting particles and non-Gaussian effects,” Opt. Commun. 181, 231–238 (2000).
[CrossRef]

Opt. Express (1)

Waves Random Media (1)

E. Jakeman, “Polarisation fluctuations in radiation scattered by small particles,” Waves Random Media 5, 427–442 (1995).
[CrossRef]

Other (3)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–75.

P. N. Pusey, “Statistical properties of scattered radiation,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., NATO ASI Ser. B23, 45–141 (1977).

U. K. Krieger, C. Braun, “Light-scattering intensity fluctuations in single aerosol particles during deliquiescence,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Orientation of the scattering system. A spherical inclusion lies a distance d from the origin on a line segment oriented at angle θinc from the z axis.

Fig. 2
Fig. 2

(a) Average light scattering total intensity signal of an r host = 6.00λ and m host = 1.05 spherical host with an r inc = 3.00λ and m inc = 1.15 spherical inclusion when d = 3.0λ. Also shown is the intensity signal for the concentric (single) sphere case (d = 0). (b) Second-order factorial moment 〈I 2〉/〈I2 of the light scattering intensity.

Fig. 3
Fig. 3

Cross-polarization intensities 〈I cross〉/〈I〉 for the system of Fig. 2.

Fig. 4
Fig. 4

Fluctuations in the cross-polarization intensities 〈Icross2〉/〈I2 for the system of Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I2θsca=14πθinc=0πϕinc=02π I2θsca, ϕsca×sin θincdϕincdθinc,
IcrossHVθsca=14πθinc=0πϕinc=02π IcrossHV(θsca, ϕsca)×sin θincdϕincdθinc,
IcrossVHθsca=14πθinc=0πϕinc=02π IcrossVHθsca, ϕsca×sin θincdϕincdθinc.

Metrics