Abstract

Optical fiber homodyne dynamic light scattering employs both the advantage of a sensitivity improvement over the standard self-beating technique and the inherent self-aligning simplicity of the optics. Ultralow concentrations of approximately nanometer-sized particles become accessible by dynamic light-scattering techniques.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chu, Laser Light Scattering, 2nd ed. (Academic, San Diego, Calif., 1991).
  2. H. Z. Cummins, E. R. Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974).
  3. H. Z. Cummins, E. R. Pike, eds., Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977).
  4. R. G. W. Brown, “Dynamic light scattering using monomode optical fibers,” Appl. Opt. 26, 4846–4851 (1987).
  5. R. G. W. Brown, “Dynamic light scattering apparatus,” UK patent2230601B (submitted 12March1987; issued 24February1988).
  6. R. G. W. Brown, “Dynamic light scattering apparatus,” U.S. patent4,978,237 (submitted 12March1987; issued 4December1990).
  7. R. G. W. Brown, J. G. Burnett, J. Mansbridge, C. I. Moir, “Miniature laser light scattering instrumentation for particle size analysis,” Appl. Opt. 29, 4159–4169 (1990).
    [CrossRef] [PubMed]
  8. H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
    [CrossRef]
  9. B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).
  10. E. Jakeman, “Photon correlation,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 75–149.
  11. C. J. Oliver, “Correlation techniques,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 151–223.
  12. K. Schätzel, “Correlation techniques in dynamic light scattering,” Appl. Phys. B. 42, 193–213 (1987).
    [CrossRef]
  13. K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
    [CrossRef]
  14. V. Degiorgio, “Photon correlation techniques,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 142–163.
  15. I. Flammer, J. Ricka, “Dynamic light scattering with single-mode receivers: partial heterodyning regime,” Appl. Opt. 36, 7508–7517 (1997), and references therein.
  16. Model DynaPro light-scattering systems, Protein Solutions, Inc., Charlottesville, Va., http://www.protein-solutions.com .
  17. R. B. Rogers, W. V. Meyer, J. Zhu, P. M. Chaikin, W. B. Russel, M. Li, W. B. Turner, “Compact laser light-scattering instrument for microgravity research,” Appl. Opt. 36, 7493–7500 (1997).
  18. Type HB800 high-birefringence optical fiber, Fibercore, Southampton, UK, http://www.fibercore.com .
  19. R. G. W. Brown, R. S. Grant, “Photon statistical properties of visible laser diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
    [CrossRef]
  20. Canadian Instrumentation and Research, Ltd., Burlington, Ontario, Canada, http://www.cirl.com .
  21. R. G. W. Brown, R. Jones, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  22. Model SPCM-AQ-1XY single-photon-counting module (actively quenched), EG&G Optoelectronics Canada, Vaudreuil, Quebec, Canada.
  23. Model Flex99 correlator, Correlators.com , Bridgewater, N.J., http://www.correlators.com .
  24. P. N. Pusey, J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Dielectric and Related Molecular Processes, M. Davies, ed. (The Chemical Society, London, 1975), Vol. 2, pp. 48–105.
    [CrossRef]
  25. MathCad7 mathematics software, MathSoft, Inc., Cambridge, Mass., http://www.mathsoft.com .
  26. D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
    [CrossRef]
  27. C. Lin, ed., Optoelectronic Technology and Lightwave Communication Systems (Van Nostrand Reinhold, New York, 1989), Chap. 4.
    [CrossRef]
  28. FC-style single-mode fiber-optics connectors are widely available, e.g., from Thorlabs, Ltd., http://www.thorlabs.com . See also http://www.fibercore.com .
  29. D. L. Bisbee, “Splicing silica fibers with an electric arc,” Appl. Opt. 15, 796–798 (1976).
    [CrossRef] [PubMed]
  30. L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
    [CrossRef]
  31. D. A. Jackson, J. D. C. Jones, “Fibre optic sensors,” Opt. Acta 12, 1469–1503 (1986).
    [CrossRef]
  32. “Laser diode LTO24-MD data sheet,” (Sharp Corp., Tokyo, 1985).
  33. R. G. W. Brown, A. E. Smart, “Practical considerations in photon correlation experiments,” Appl. Opt. 36, 7480–7492 (1997).
    [CrossRef]
  34. OZ Optics, Ltd., Carp, Ontario, Canada, http://www.ozoptics.com .
  35. C. J. Oliver, E. R. Pike, “Statistical accuracy in the photon counting structure function of fluctuating light fields,” Opt. Acta 29, 1345–1358 (1981).
    [CrossRef]
  36. K. Schätzel, “Noise in photon correlation and photon structure functions,” Opt. Acta 30, 155–166 (1983).
    [CrossRef]
  37. H. Z. Cummins, “Applications of light beating spectroscopy to biology,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 285–330.
  38. PointSource, Ltd., Hamble, UK, http://www.point-source.com .

1997 (3)

1990 (1)

1988 (1)

K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
[CrossRef]

1987 (4)

R. G. W. Brown, “Dynamic light scattering using monomode optical fibers,” Appl. Opt. 26, 4846–4851 (1987).

K. Schätzel, “Correlation techniques in dynamic light scattering,” Appl. Phys. B. 42, 193–213 (1987).
[CrossRef]

R. G. W. Brown, R. S. Grant, “Photon statistical properties of visible laser diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

R. G. W. Brown, R. Jones, K. D. Ridley, J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: active quenching,” Appl. Opt. 26, 2383–2389 (1987).
[CrossRef] [PubMed]

1986 (1)

D. A. Jackson, J. D. C. Jones, “Fibre optic sensors,” Opt. Acta 12, 1469–1503 (1986).
[CrossRef]

1983 (1)

K. Schätzel, “Noise in photon correlation and photon structure functions,” Opt. Acta 30, 155–166 (1983).
[CrossRef]

1982 (2)

L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
[CrossRef]

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
[CrossRef]

1981 (1)

C. J. Oliver, E. R. Pike, “Statistical accuracy in the photon counting structure function of fluctuating light fields,” Opt. Acta 29, 1345–1358 (1981).
[CrossRef]

1976 (1)

1964 (1)

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Barlow, A. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
[CrossRef]

Bertolotti, M.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).

Bisbee, D. L.

Brown, R. G. W.

Burnett, J. G.

Chaikin, P. M.

Chu, B.

B. Chu, Laser Light Scattering, 2nd ed. (Academic, San Diego, Calif., 1991).

Crosignani, B.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).

Cummins, H. Z.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

H. Z. Cummins, “Applications of light beating spectroscopy to biology,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 285–330.

Degiorgio, V.

V. Degiorgio, “Photon correlation techniques,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 142–163.

Di Porto, P.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).

Drewel, M.

K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
[CrossRef]

Flammer, I.

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
[CrossRef]

Grant, R. S.

R. G. W. Brown, R. S. Grant, “Photon statistical properties of visible laser diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

Jackson, D. A.

D. A. Jackson, J. D. C. Jones, “Fibre optic sensors,” Opt. Acta 12, 1469–1503 (1986).
[CrossRef]

Jakeman, E.

E. Jakeman, “Photon correlation,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 75–149.

Jones, J. D. C.

D. A. Jackson, J. D. C. Jones, “Fibre optic sensors,” Opt. Acta 12, 1469–1503 (1986).
[CrossRef]

Jones, R.

Knable, N.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Li, M.

Mansbridge, J.

Meyer, W. V.

Moir, C. I.

Oliver, C. J.

C. J. Oliver, E. R. Pike, “Statistical accuracy in the photon counting structure function of fluctuating light fields,” Opt. Acta 29, 1345–1358 (1981).
[CrossRef]

C. J. Oliver, “Correlation techniques,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 151–223.

Payne, D. N.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
[CrossRef]

Pike, E. R.

C. J. Oliver, E. R. Pike, “Statistical accuracy in the photon counting structure function of fluctuating light fields,” Opt. Acta 29, 1345–1358 (1981).
[CrossRef]

Pusey, P. N.

P. N. Pusey, J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Dielectric and Related Molecular Processes, M. Davies, ed. (The Chemical Society, London, 1975), Vol. 2, pp. 48–105.
[CrossRef]

Ramskov-Hansen, J. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
[CrossRef]

Rarity, J. G.

Ricka, J.

Ridley, K. D.

Rogers, R. B.

Russel, W. B.

Schätzel, K.

K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
[CrossRef]

K. Schätzel, “Correlation techniques in dynamic light scattering,” Appl. Phys. B. 42, 193–213 (1987).
[CrossRef]

K. Schätzel, “Noise in photon correlation and photon structure functions,” Opt. Acta 30, 155–166 (1983).
[CrossRef]

Smart, A. E.

Stimac, S.

K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
[CrossRef]

Turner, W. B.

Vaughan, J. M.

P. N. Pusey, J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Dielectric and Related Molecular Processes, M. Davies, ed. (The Chemical Society, London, 1975), Vol. 2, pp. 48–105.
[CrossRef]

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
[CrossRef]

Yeh, Y.

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Zhu, J.

Appl. Opt. (7)

Appl. Phys. B. (1)

K. Schätzel, “Correlation techniques in dynamic light scattering,” Appl. Phys. B. 42, 193–213 (1987).
[CrossRef]

Electron. Lett. (1)

L. Goldberg, H. F. Taylor, J. F. Weller, “Feedback effects in a laser diode due to Rayleigh backscattering from an optical fiber,” Electron. Lett. 18, 353–354 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, “Development of low- and high-birefringence optical fibers,” IEEE J. Quantum Electron. QE-18, 477–487 (1982).
[CrossRef]

J. Mod. Opt. (1)

K. Schätzel, M. Drewel, S. Stimac, “Photon correlation measurements at large lag times: improving statistical accuracy,” J. Mod. Opt. 35, 711–718 (1988).
[CrossRef]

Opt. Acta (3)

C. J. Oliver, E. R. Pike, “Statistical accuracy in the photon counting structure function of fluctuating light fields,” Opt. Acta 29, 1345–1358 (1981).
[CrossRef]

K. Schätzel, “Noise in photon correlation and photon structure functions,” Opt. Acta 30, 155–166 (1983).
[CrossRef]

D. A. Jackson, J. D. C. Jones, “Fibre optic sensors,” Opt. Acta 12, 1469–1503 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

H. Z. Cummins, N. Knable, Y. Yeh, “Observation of diffusion broadening of Rayleigh scattered light,” Phys. Rev. Lett. 12, 150–153 (1964).
[CrossRef]

Rev. Sci. Instrum. (1)

R. G. W. Brown, R. S. Grant, “Photon statistical properties of visible laser diodes,” Rev. Sci. Instrum. 58, 928–931 (1987).
[CrossRef]

Other (22)

Canadian Instrumentation and Research, Ltd., Burlington, Ontario, Canada, http://www.cirl.com .

Type HB800 high-birefringence optical fiber, Fibercore, Southampton, UK, http://www.fibercore.com .

V. Degiorgio, “Photon correlation techniques,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 142–163.

Model DynaPro light-scattering systems, Protein Solutions, Inc., Charlottesville, Va., http://www.protein-solutions.com .

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975).

E. Jakeman, “Photon correlation,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 75–149.

C. J. Oliver, “Correlation techniques,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 151–223.

R. G. W. Brown, “Dynamic light scattering apparatus,” UK patent2230601B (submitted 12March1987; issued 24February1988).

R. G. W. Brown, “Dynamic light scattering apparatus,” U.S. patent4,978,237 (submitted 12March1987; issued 4December1990).

B. Chu, Laser Light Scattering, 2nd ed. (Academic, San Diego, Calif., 1991).

H. Z. Cummins, E. R. Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, New York, 1974).

H. Z. Cummins, E. R. Pike, eds., Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977).

“Laser diode LTO24-MD data sheet,” (Sharp Corp., Tokyo, 1985).

Model SPCM-AQ-1XY single-photon-counting module (actively quenched), EG&G Optoelectronics Canada, Vaudreuil, Quebec, Canada.

Model Flex99 correlator, Correlators.com , Bridgewater, N.J., http://www.correlators.com .

P. N. Pusey, J. M. Vaughan, “Light scattering and intensity fluctuation spectroscopy,” in Dielectric and Related Molecular Processes, M. Davies, ed. (The Chemical Society, London, 1975), Vol. 2, pp. 48–105.
[CrossRef]

MathCad7 mathematics software, MathSoft, Inc., Cambridge, Mass., http://www.mathsoft.com .

H. Z. Cummins, “Applications of light beating spectroscopy to biology,” in Photon Correlation and Light Beating Spectroscopy, H. Z. Cummins, E. R. Pike, eds. (Plenum, New York, 1974), pp. 285–330.

PointSource, Ltd., Hamble, UK, http://www.point-source.com .

C. Lin, ed., Optoelectronic Technology and Lightwave Communication Systems (Van Nostrand Reinhold, New York, 1989), Chap. 4.
[CrossRef]

FC-style single-mode fiber-optics connectors are widely available, e.g., from Thorlabs, Ltd., http://www.thorlabs.com . See also http://www.fibercore.com .

OZ Optics, Ltd., Carp, Ontario, Canada, http://www.ozoptics.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optical fiber homodyne DLS system configuration.

Fig. 2
Fig. 2

Correlogram of a lysozyme sample at 1 mg/ml with low polydispersity. No curvature is present. The crosses represent the data points of the correlogram. The solid curve represents a least-squares fit to the data points. The dotted curve simply connects the data points to guide the eye.

Fig. 3
Fig. 3

Same as for Fig. 2 but for a high-polydispersity lysozyme sample. Correlogram curvature is evident. The crosses represent the data points of the correlogram. The solid curve represents a least-squares fit to the data points. The dotted curve simply connects the data points to guide the eye.

Tables (1)

Tables Icon

Table 1 Definitions of Variables

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g2τ=1+2nsnons+no2 g1τ+ns2ns+no2 |g1τ|2,

Metrics