Abstract

A new instrument, based on the principle of phase analysis light scattering (PALS) for the measurement of electrophoretic mobilities, has been produced. Such measurements are particularly useful in the study of dispersions in nonpolar and highly conducting media. The current PALS configuration can be used to measure mobilities up to 3 orders of magnitude lower than with the conventional Doppler mode. The device has a number of new features; in particular, all the signal processing is digital and the optical system features a reference beam configuration. Data are presented to show that on suitable samples both the PALS technique and conventional laser Doppler electrophoresis can be performed on the same instrument and the techniques are in good agreement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. O’Brien, R. W. White, “Electrophoretic mobility of a spherical colloidal particle,” J. Chem. Soc. Faraday Trans. 2 74, 1607–1626 (1978).
    [CrossRef]
  2. A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
    [CrossRef]
  3. I. D. Morrison, C. J. Tarnawskyj, “Toward self-consistent characterisations of low conducting dispersions,” Langmuir 7, 2358–2361 (1991).
    [CrossRef]
  4. R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
    [CrossRef]
  5. G. V. F. Scaman, “Electrokinetic behavior of red cells,” in The Red Blood Cell, 2nd ed., D. Surgenor, ed. (Academic, New York, 1975), Chap. 27.
  6. D. A. Beretta, S. R. Pollack, “Ion concentration effects on the zeta potential of bone,” J. Orthop. Res. 4, 337–345 (1986).
    [CrossRef]
  7. M. D. Coffey, R. V. Lauzon, “Particle electrophoresis study of barium sulfate inhibition,” in Proceedings of International Symposium on Oilfield Chemistry (Society of Petroleum Engineers, Richardson, Tex., 1975), paper 5302, pp. 93–99.
  8. A. A. Yousef, T. A. Bibawy, “The role of inorganic electrolytes in the flotation of barium sulfate,” Tenside Deterg. 13(5), 265–270 (1976).
  9. V. Novotney, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
    [CrossRef]
  10. H. A. Pohl, “Dielectrophoresis in suspensions and colloids,” in Dielectrophoresis, M. M. Woolfson, J. M. Ziman, eds. (Cambridge University, Cambridge, England, 1978), pp. 263–349.
  11. J. F. Miller, Ph.D. Thesis, “The determination of very small electrophoretic mobilities of dispersions in non-polar media using phase analysis light scattering,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1990).
  12. J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
    [CrossRef]
  13. E. E. Uzgiris, “Laser Doppler methods in electrophoresis,” Prog. Surf. Sci. 10(1), 53–164 (1981).
  14. P. McFadyen, D. Fairhurst, “Zeta potentials of nanoceramic materials: measurement and interpretation,” Proc. Br. Ceram. Soc. 51, 175–185 (1993).
  15. V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
    [CrossRef]
  16. R. J. Hunter, “Influence of simple inorganic ions on zeta potential,” in Zeta Potential in Colloid Science, R. H. Ottewil, R. L. Rowell, eds. (Academic, New York, 1981), pp. 258–304.
    [CrossRef]
  17. J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
    [CrossRef]
  18. S. Bradbrook, “A study of microgel particles in aqueous and non-aqueous media using light scattering techniques,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1996).
  19. M. E. Labib, R. Williams, “The use of zeta-potential measurements in organic solvents to determine the donor–acceptor properties of solid surfaces,” J. Colloid Interface Sci. 97, 356–366 (1984).
    [CrossRef]
  20. F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
    [CrossRef]
  21. D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
    [CrossRef]
  22. M. Kosmulski, E. Matijevic, “Microelectrophoresis of silica in mixed solvents of low dielectric constant,” Langmuir 7, 2066–2071 (1991).
    [CrossRef]
  23. D. H. Moore, “Clinical and physiological applications of electrophoresis,” in Electrophoresis: Theory, Methods, and Applications, M. Bier, ed. (Academic, New York, 1959), pp. 369–421.
  24. Certification report on reference materials of defined particle size, EUR 6825 (European Community Bureau of Reference, 303 Rue de la Loi, Brussels, Belgium, 1980).

1995 (1)

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

1993 (1)

P. McFadyen, D. Fairhurst, “Zeta potentials of nanoceramic materials: measurement and interpretation,” Proc. Br. Ceram. Soc. 51, 175–185 (1993).

1992 (2)

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
[CrossRef]

1991 (3)

I. D. Morrison, C. J. Tarnawskyj, “Toward self-consistent characterisations of low conducting dispersions,” Langmuir 7, 2358–2361 (1991).
[CrossRef]

J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
[CrossRef]

M. Kosmulski, E. Matijevic, “Microelectrophoresis of silica in mixed solvents of low dielectric constant,” Langmuir 7, 2066–2071 (1991).
[CrossRef]

1986 (1)

D. A. Beretta, S. R. Pollack, “Ion concentration effects on the zeta potential of bone,” J. Orthop. Res. 4, 337–345 (1986).
[CrossRef]

1984 (1)

M. E. Labib, R. Williams, “The use of zeta-potential measurements in organic solvents to determine the donor–acceptor properties of solid surfaces,” J. Colloid Interface Sci. 97, 356–366 (1984).
[CrossRef]

1981 (1)

E. E. Uzgiris, “Laser Doppler methods in electrophoresis,” Prog. Surf. Sci. 10(1), 53–164 (1981).

1979 (1)

V. Novotney, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

1978 (1)

R. W. O’Brien, R. W. White, “Electrophoretic mobility of a spherical colloidal particle,” J. Chem. Soc. Faraday Trans. 2 74, 1607–1626 (1978).
[CrossRef]

1976 (1)

A. A. Yousef, T. A. Bibawy, “The role of inorganic electrolytes in the flotation of barium sulfate,” Tenside Deterg. 13(5), 265–270 (1976).

1965 (1)

D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
[CrossRef]

1958 (1)

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Anderson, F. W.

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Bangham, A. D.

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Benneyworth, P. R.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Beretta, D. A.

D. A. Beretta, S. R. Pollack, “Ion concentration effects on the zeta potential of bone,” J. Orthop. Res. 4, 337–345 (1986).
[CrossRef]

Bibawy, T. A.

A. A. Yousef, T. A. Bibawy, “The role of inorganic electrolytes in the flotation of barium sulfate,” Tenside Deterg. 13(5), 265–270 (1976).

Bradbrook, S.

S. Bradbrook, “A study of microgel particles in aqueous and non-aqueous media using light scattering techniques,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1996).

Clifton, B. J.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Coffey, M. D.

M. D. Coffey, R. V. Lauzon, “Particle electrophoresis study of barium sulfate inhibition,” in Proceedings of International Symposium on Oilfield Chemistry (Society of Petroleum Engineers, Richardson, Tex., 1975), paper 5302, pp. 93–99.

Fairhurst, D.

P. McFadyen, D. Fairhurst, “Zeta potentials of nanoceramic materials: measurement and interpretation,” Proc. Br. Ceram. Soc. 51, 175–185 (1993).

Flemans, R.

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Fowkes, F. M.

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Hackley, V. A.

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

Heard, D. H.

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Hunter, R. J.

R. J. Hunter, “Influence of simple inorganic ions on zeta potential,” in Zeta Potential in Colloid Science, R. H. Ottewil, R. L. Rowell, eds. (Academic, New York, 1981), pp. 258–304.
[CrossRef]

Jinnai, H.

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Kornbrekke, R. E.

R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
[CrossRef]

Kosmulski, M.

M. Kosmulski, E. Matijevic, “Microelectrophoresis of silica in mixed solvents of low dielectric constant,” Langmuir 7, 2066–2071 (1991).
[CrossRef]

Labib, M. E.

M. E. Labib, R. Williams, “The use of zeta-potential measurements in organic solvents to determine the donor–acceptor properties of solid surfaces,” J. Colloid Interface Sci. 97, 356–366 (1984).
[CrossRef]

Lauzon, R. V.

M. D. Coffey, R. V. Lauzon, “Particle electrophoresis study of barium sulfate inhibition,” in Proceedings of International Symposium on Oilfield Chemistry (Society of Petroleum Engineers, Richardson, Tex., 1975), paper 5302, pp. 93–99.

MacDonald, I.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Malghan, S. G.

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

Marsh, J. F.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Matijevic, E.

M. Kosmulski, E. Matijevic, “Microelectrophoresis of silica in mixed solvents of low dielectric constant,” Langmuir 7, 2066–2071 (1991).
[CrossRef]

McFadyen, P.

P. McFadyen, D. Fairhurst, “Zeta potentials of nanoceramic materials: measurement and interpretation,” Proc. Br. Ceram. Soc. 51, 175–185 (1993).

McGown, D. N. L.

D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
[CrossRef]

Miller, J. F.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
[CrossRef]

J. F. Miller, Ph.D. Thesis, “The determination of very small electrophoretic mobilities of dispersions in non-polar media using phase analysis light scattering,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1990).

Moore, D. H.

D. H. Moore, “Clinical and physiological applications of electrophoresis,” in Electrophoresis: Theory, Methods, and Applications, M. Bier, ed. (Academic, New York, 1959), pp. 369–421.

Moore, R. J.

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Morrison, I. D.

R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
[CrossRef]

I. D. Morrison, C. J. Tarnawskyj, “Toward self-consistent characterisations of low conducting dispersions,” Langmuir 7, 2358–2361 (1991).
[CrossRef]

Mostafa, A.

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Novotney, V.

V. Novotney, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

O’Brien, R. W.

R. W. O’Brien, R. W. White, “Electrophoretic mobility of a spherical colloidal particle,” J. Chem. Soc. Faraday Trans. 2 74, 1607–1626 (1978).
[CrossRef]

Oja, T.

R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
[CrossRef]

Parfitt, G. D.

D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
[CrossRef]

Pohl, H. A.

H. A. Pohl, “Dielectrophoresis in suspensions and colloids,” in Dielectrophoresis, M. M. Woolfson, J. M. Ziman, eds. (Cambridge University, Cambridge, England, 1978), pp. 263–349.

Pollack, S. R.

D. A. Beretta, S. R. Pollack, “Ion concentration effects on the zeta potential of bone,” J. Orthop. Res. 4, 337–345 (1986).
[CrossRef]

Premachandran, R. S.

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

Scaman, G. V. F.

G. V. F. Scaman, “Electrokinetic behavior of red cells,” in The Red Blood Cell, 2nd ed., D. Surgenor, ed. (Academic, New York, 1975), Chap. 27.

Schätzel, K.

J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
[CrossRef]

Schiller, S. B.

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

Seaman, G. V. F.

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Tarnawskyj, C. J.

I. D. Morrison, C. J. Tarnawskyj, “Toward self-consistent characterisations of low conducting dispersions,” Langmuir 7, 2358–2361 (1991).
[CrossRef]

Uzgiris, E. E.

E. E. Uzgiris, “Laser Doppler methods in electrophoresis,” Prog. Surf. Sci. 10(1), 53–164 (1981).

Vincent, B.

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Vincent, B. J.

J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
[CrossRef]

White, R. W.

R. W. O’Brien, R. W. White, “Electrophoretic mobility of a spherical colloidal particle,” J. Chem. Soc. Faraday Trans. 2 74, 1607–1626 (1978).
[CrossRef]

Williams, R.

M. E. Labib, R. Williams, “The use of zeta-potential measurements in organic solvents to determine the donor–acceptor properties of solid surfaces,” J. Colloid Interface Sci. 97, 356–366 (1984).
[CrossRef]

Willis, E. J.

D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
[CrossRef]

Yousef, A. A.

A. A. Yousef, T. A. Bibawy, “The role of inorganic electrolytes in the flotation of barium sulfate,” Tenside Deterg. 13(5), 265–270 (1976).

Colloids Surf. (1)

J. F. Miller, B. J. Clifton, P. R. Benneyworth, B. Vincent, I. MacDonald, J. F. Marsh, “Electrophoretic studies of calcium carbonate particles dispersed in various hydrocarbon liquids,” Colloids Surf. 66, 197–202 (1992).
[CrossRef]

Colloids Surf. A (1)

V. A. Hackley, R. S. Premachandran, S. G. Malghan, S. B. Schiller, “A standard reference material for the measurement of particle mobility by electrophoretic light scattering,” Colloids Surf. A 98, 209–224 (1995).
[CrossRef]

J. Appl. Phys. (1)

V. Novotney, “Particle charges and particle-substrate forces by optical transients,” J. Appl. Phys. 50, 324–332 (1979).
[CrossRef]

J. Chem. Soc. Faraday Trans. 2 (1)

R. W. O’Brien, R. W. White, “Electrophoretic mobility of a spherical colloidal particle,” J. Chem. Soc. Faraday Trans. 2 74, 1607–1626 (1978).
[CrossRef]

J. Colloid Interface Sci. (2)

J. F. Miller, K. Schätzel, B. J. Vincent, “The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering,” J. Colloid Interface Sci. 143, 532–554 (1991).
[CrossRef]

M. E. Labib, R. Williams, “The use of zeta-potential measurements in organic solvents to determine the donor–acceptor properties of solid surfaces,” J. Colloid Interface Sci. 97, 356–366 (1984).
[CrossRef]

J. Colloid Sci. (1)

D. N. L. McGown, G. D. Parfitt, E. J. Willis, “Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media,” J. Colloid Sci. 20, 650–664 (1965).
[CrossRef]

J. Orthop. Res. (1)

D. A. Beretta, S. R. Pollack, “Ion concentration effects on the zeta potential of bone,” J. Orthop. Res. 4, 337–345 (1986).
[CrossRef]

Langmuir (3)

I. D. Morrison, C. J. Tarnawskyj, “Toward self-consistent characterisations of low conducting dispersions,” Langmuir 7, 2358–2361 (1991).
[CrossRef]

R. E. Kornbrekke, I. D. Morrison, T. Oja, “Electrophoretic mobility measurements in low conducting media,” Langmuir 8, 1211–1217 (1992).
[CrossRef]

M. Kosmulski, E. Matijevic, “Microelectrophoresis of silica in mixed solvents of low dielectric constant,” Langmuir 7, 2066–2071 (1991).
[CrossRef]

Nature (London) (1)

A. D. Bangham, D. H. Heard, R. Flemans, G. V. F. Seaman, “An apparatus for microelectrophoresis of small particles,” Nature (London) 82, 642–644 (1958).
[CrossRef]

Proc. Br. Ceram. Soc. (1)

P. McFadyen, D. Fairhurst, “Zeta potentials of nanoceramic materials: measurement and interpretation,” Proc. Br. Ceram. Soc. 51, 175–185 (1993).

Prog. Surf. Sci. (1)

E. E. Uzgiris, “Laser Doppler methods in electrophoresis,” Prog. Surf. Sci. 10(1), 53–164 (1981).

Tenside Deterg. (1)

A. A. Yousef, T. A. Bibawy, “The role of inorganic electrolytes in the flotation of barium sulfate,” Tenside Deterg. 13(5), 265–270 (1976).

Other (9)

R. J. Hunter, “Influence of simple inorganic ions on zeta potential,” in Zeta Potential in Colloid Science, R. H. Ottewil, R. L. Rowell, eds. (Academic, New York, 1981), pp. 258–304.
[CrossRef]

S. Bradbrook, “A study of microgel particles in aqueous and non-aqueous media using light scattering techniques,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1996).

G. V. F. Scaman, “Electrokinetic behavior of red cells,” in The Red Blood Cell, 2nd ed., D. Surgenor, ed. (Academic, New York, 1975), Chap. 27.

M. D. Coffey, R. V. Lauzon, “Particle electrophoresis study of barium sulfate inhibition,” in Proceedings of International Symposium on Oilfield Chemistry (Society of Petroleum Engineers, Richardson, Tex., 1975), paper 5302, pp. 93–99.

H. A. Pohl, “Dielectrophoresis in suspensions and colloids,” in Dielectrophoresis, M. M. Woolfson, J. M. Ziman, eds. (Cambridge University, Cambridge, England, 1978), pp. 263–349.

J. F. Miller, Ph.D. Thesis, “The determination of very small electrophoretic mobilities of dispersions in non-polar media using phase analysis light scattering,” Ph.D. dissertation (School of Chemistry, University of Bristol, Bristol, UK, 1990).

D. H. Moore, “Clinical and physiological applications of electrophoresis,” in Electrophoresis: Theory, Methods, and Applications, M. Bier, ed. (Academic, New York, 1959), pp. 369–421.

Certification report on reference materials of defined particle size, EUR 6825 (European Community Bureau of Reference, 303 Rue de la Loi, Brussels, Belgium, 1980).

F. M. Fowkes, H. Jinnai, A. Mostafa, F. W. Anderson, R. J. Moore, in Colloids and Surfaces in Reprographic Technology, M. Hair, M. D. Croucher, eds., American Chemical Society Symposium Series 200 (American Chemical Society, Washington, D.C., 1982), pp. 307–324.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Amplitude-weighted phase difference spectra for V c = 0 and V c > 0.

Fig. 2
Fig. 2

Schematic diagram of the instrument.

Fig. 3
Fig. 3

Brookhaven Instruments Corporation Zeta potential reference sample ZR3 by use of PALS. The dotted curve represents measured data points. The photon count intensities were measured in kilocounts/s (kcps).

Fig. 4
Fig. 4

Raw water and 0.075-mg/l KMnO4. Autotracking not applied. The dotted curve represents measured data points. The photon count intensities were measured in kilocounts/s (kcps).

Fig. 5
Fig. 5

Electrophoretic mobility of NIST Reference Material SRM 1980. The dotted curve represents the measured data points. The photon count intensities were measured in kilocounts/s (kcps).

Fig. 6
Fig. 6

Silica in increasing salt concentrations.

Tables (2)

Tables Icon

Table 1 Mobility Ratio for Particles with the Same Zeta Potential in Various Media

Tables Icon

Table 2 Comparison of Electrophoretic Mobilities by Conventional and PALS Measurements

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

μe=ζfκaηT,
dΦstdt=ωs=q·ve±vc.
dΦstdt=q·μeEt±vc,
St=A exp-jω0t+Φs.
Sreft=expjω0t=cosω0t+j sinω0t,
A exp-jω0t+Φsexpjω0t=A expjΦs=A cosΦs+A sinΦs.
Φs=arctansinΦs/cosΦs,
|A|=ampl=(A cosΦs2+A sinΦs2)1/2.
ΔΦs=Φte-Φ0=Aq0te μeEt±vcdt
ΔΦs=AqμeE0 cosωete/ωe±vte,

Metrics