Abstract

The spatial distribution of two-photon excitation created by crossed focused Gaussian beams is shown. The effective volume calculation for the two-photon interaction of crossed Gaussian beams is presented. The dimensions of cubic and parallelepiped volumes, in which half of the two-photon interaction is localized, are determined. The memory densities of two-photon three-dimensional memory for crossed focused beams and one focused beam are compared.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  2. S. Hunter, F. Kiamilev, S. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990).
    [CrossRef] [PubMed]
  3. N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
    [CrossRef]
  4. D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
    [CrossRef]
  5. E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).
  6. T. Tanaka, S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996).
    [CrossRef]
  7. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  9. G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
    [CrossRef] [PubMed]
  10. R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975).
    [CrossRef]
  11. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [CrossRef]

1999 (3)

E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

1998 (1)

1997 (2)

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

1996 (1)

1990 (1)

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1975 (1)

R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975).
[CrossRef]

Akimov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Alfimov, E. E.

E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Ellisman, A.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Esener, S.

Fan, G. Y.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Fedotov, A. B.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Fujisaki, H.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Gu, M.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Hunter, S.

Kawata, S.

Kiamilev, F.

Koroteev, N. I.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Magnitskii, S. A.

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Makukha, V. K.

E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

McClain, W. M.

R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Meshalkin, Yu. P.

E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).

Miyawaki, A.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Naumov, A. N.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Parthenopoulos, D. A.

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rentzepis, P. M.

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Shubin, V. V.

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

Sidorov-Biryukov, D. A.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Sokolyuk, N. T.

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

Swofford, R. L.

R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975).
[CrossRef]

Tanaka, T.

Toriumi, A.

Tsay, A.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Tsien, A.

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Wu, X-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Zheltikov, A. M.

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (1)

G. Y. Fan, H. Fujisaki, A. Miyawaki, A. Tsay, A. Tsien, A. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76, 2412–2420 (1999).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

R. L. Swofford, W. M. McClain, “The effect of temporal laser beam characteristics on two-photon absorption,” Chem. Phys. Lett. 34, 455–460 (1975).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. Part 1 (2)

N. I. Koroteev, S. A. Magnitskii, V. V. Shubin, N. T. Sokolyuk, “Photochemical and spectroscopic properties of naphthacenequinones as candidates for 3D optical data storage,” Jpn. J. Appl. Phys. Part 1 36, 424–425 (1997).
[CrossRef]

D. A. Akimov, A. B. Fedotov, N. I. Koroteev, S. A. Magnitskii, A. N. Naumov, D. A. Sidorov-Biryukov, A. M. Zheltikov, “Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,” Jpn. J. Appl. Phys. Part 1 36, 426–428 (1997).
[CrossRef]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X-L. Wu, S. R. Marder, J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Opt. Lett. (1)

Optoelectron. Instrum. Data Process. (1)

E. E. Alfimov, V. K. Makukha, Yu. P. Meshalkin, “Spatial luminescence distribution in two-photon excited materials,” Optoelectron. Instrum. Data Process. No. 4, 96–99 (1999).

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a 3-D optical memory device.

Fig. 2
Fig. 2

Spatial distribution of TPEL near the intersection of focused laser beams. The calculated distribution as (a) the surface plot, (b) the contour plot, and (c) the experimentally obtained two-photon luminescence are shown.

Fig. 3
Fig. 3

Material with (a) only one written cell and (b) only one nonwritten cell.

Fig. 4
Fig. 4

Dependence of the relative effective threshold volume V by means of h for w 0 = 0.2 and w 0 = 0.5.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ILx, y, z=IL0w02w2z ×exp-2x2+y2wz2,
ILx, y, z,=PLπw021+z2/z02×exp-2x2+y2w021+z2/z02.
ITPELx, y, z=μILx, y, z2,
ITPEL=μNvPL2π2w04×exp-4x2+y2w021+z/z021+z/z022+2 exp-2x2+y2w021+z/z02+2x2+z2ω021+y/y021+z/z021+y/y02+exp-4x2+z2w021+y/y021+y/y022,
-a/2+a/2-a/2+a/2-a/2+a/2 ITPELx, y, zdxdydz=12-+-+-+ ITPELx, y, zdxdydz.
r=2 w0,  h=2z0,  VEffThr=4π2w04nλ.

Metrics