Abstract

Readout of a phase-change optical disk with a superresolution (SR) near-field structure (Super-RENS) is theoretically examined on the basis of three-dimensional, full-wave vector diffraction theory. Calculations have demonstrated that Super-RENS has a high spatial resolution beyond the diffraction limit in readout. The read signal is dependent on the nature of SR, the layer structure of the disk, and the state of polarization of the incident laser beam. For the Super-RENS in which antimony is used for SR readout, the readout signal is quite small, and the estimated carrier-to-noise ratio (CNR) is only ∼30 dB for marks of 300 nm. For the Super-RENS in which a metallic region is formed during readout, the read signal is large, and the CNR can be as high as 50 dB in reading 300-nm marks.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
    [CrossRef]
  2. C. Peng, M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323–6329 (1999).
    [CrossRef]
  3. H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
    [CrossRef]
  4. E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  5. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
    [CrossRef]
  6. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  7. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
    [CrossRef]
  8. N. Yamada, “Erasable phase-change optical materials,” MRS Bull. 21, 48–50 (1996).
  9. Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
    [CrossRef]
  10. J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
    [CrossRef]
  11. J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
    [CrossRef]
  12. H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
    [CrossRef]
  13. Y. Wu, C. T. Chong, “Theoretical analysis of a thermally induced superresolution optical disk with different readout optics,” Appl. Opt. 36, 6668–6677 (1997).
    [CrossRef]
  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995), Chaps. 3–7.
  15. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
    [CrossRef]
  16. C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
    [CrossRef]
  17. C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
    [CrossRef]
  18. H. Iwasaki, “CD-ReWritable and future technology,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 12–19 (1997).
    [CrossRef]
  19. J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
    [CrossRef]

2000 (3)

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

1999 (3)

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

C. Peng, M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323–6329 (1999).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

1998 (2)

J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
[CrossRef]

C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
[CrossRef]

1997 (1)

1996 (4)

N. Yamada, “Erasable phase-change optical materials,” MRS Bull. 21, 48–50 (1996).

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

1995 (2)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
[CrossRef]

1992 (1)

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

1989 (1)

Atoda, N.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
[CrossRef]

Awano, H.

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

Baldwin, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Chichester, K.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Chong, C. T.

Dhar, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Fuji, H.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

Fukaya, T.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

Fukumoto, A.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

Hobson, W. S.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Hopkins, L.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Iwasaki, H.

H. Iwasaki, “CD-ReWritable and future technology,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 12–19 (1997).
[CrossRef]

Kaneko, M.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

Kasami, Y.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

Katayama, H.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

Lopata, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Mansuripur, M.

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323–6329 (1999).
[CrossRef]

C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
[CrossRef]

M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Men, L.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

Murakami, Y.

Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
[CrossRef]

Murray, C. A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Nakano, T.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
[CrossRef]

Ohnuki, S.

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

Ohta, N.

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

Ono, M.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

Partovi, A.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Peale, D.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Peng, C.

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

C. Peng, M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323–6329 (1999).
[CrossRef]

C. Peng, M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37, 921–928 (1998).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Sato, A.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

Shirai, H.

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995), Chaps. 3–7.

Takahashi, A.

Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
[CrossRef]

Terashima, S.

Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Tominaga, J.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Wu, Y.

Wuttig, M.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Wynn, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Yamada, N.

N. Yamada, “Erasable phase-change optical materials,” MRS Bull. 21, 48–50 (1996).

Yasuda, K.

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

Yeh, J.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Zydzik, G.

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

H. Awano, S. Ohnuki, H. Shirai, N. Ohta, “Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal,” Appl. Phys. Lett. 69, 4257–4259 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, K. Chichester, J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Appl. Phys. Lett. 75, 1515–1517 (1999).
[CrossRef]

J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73, 2078–2080 (1998).
[CrossRef]

IEEE Trans. Magn. (1)

Y. Murakami, A. Takahashi, S. Terashima, “Magnetic super-resolution,” IEEE Trans. Magn. 31, 3215–3220 (1995).
[CrossRef]

J. Appl. Phys. (2)

C. Peng, M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323–6329 (1999).
[CrossRef]

C. Peng, M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214–1220 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–961 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, “Antimony aperture properties on super-resolution near-field structure using different protection layers,” Jpn. J. Appl. Phys. 38, 4089–4093 (1999).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (2)

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. Part 1 39, 980–981 (2000).
[CrossRef]

Y. Kasami, K. Yasuda, M. Ono, A. Fukumoto, M. Kaneko, “Premastered optical disk by superresolution using rear aperture detection,” Jpn. J. Appl. Phys. Part 1 35, 423–428 (1996).
[CrossRef]

MRS Bull. (1)

N. Yamada, “Erasable phase-change optical materials,” MRS Bull. 21, 48–50 (1996).

Science (2)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Other (2)

H. Iwasaki, “CD-ReWritable and future technology,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 12–19 (1997).
[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995), Chaps. 3–7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of the simulated optical system. A linearly or circularly polarized Gaussian beam of light is brought to focus onto a planar optical disk by an objective lens. The reflected beam from the disk is detected by a photodiode.

Fig. 2
Fig. 2

Variations of E z amplitude along the track near an aperture in Sb1 at y = -105, -165, -181, -200, -220, and -250 nm. The aperture is centered at (x, z) = (0, 0) and located at y = -170 to -185 nm. Its size is 240 nm in diameter. The incident beam is linearly polarized along the Z axis.

Fig. 3
Fig. 3

Profiles of the normalized E z 2 versus z near an aperture in Sb1 at y = -105, -165, -181, -200, -220, and -250 nm. The aperture is centered at (x, z) = (0, 0) and located at y = -170 to -185 nm. The incident beam is linearly polarized along the Z axis.

Fig. 4
Fig. 4

Distribution of the y component of the Poynting vector in the x = 0 plane when the central portion of the Sb layer is melted in Sb1. In the frame, the bright gray region stands for the high level, and the dark gray region represents the low level. The incident beam is linearly polarized along the Z axis.

Fig. 5
Fig. 5

Read signal as the focused beam scans from the mark centered at z = 0 to the spacer along a track in Sb2. In the track, a periodic mark pattern with a duty cycle of 50% is recorded. In the scan, a circular aperture in the antimony layer exists at the center of the focused spot and moves with the focused beam. The corresponding mark size to the three curves is d mark = 240, 180, and 120 nm, respectively. The incident beam is linearly polarized along the track.

Fig. 6
Fig. 6

Dependence of ΔR/ R on the size of the aperture while reading a periodic mark pattern in Sb2. The marks on the track are 240 nm in diameter, and the incident beam is linearly polarized along the track.

Fig. 7
Fig. 7

Variation of ΔR/ R as a function of the mark size in Sb2, Sb3, and Sb4. In the calculations, a circular aperture in the antimony layer is centered in the focused spot, and the diameter of the aperture is equal to d mark + 30 nm. The incident beam is linearly polarized either along the track (E z polarization) or perpendicular to the track (E x polarization).

Fig. 8
Fig. 8

Experimentally obtained relationship between the CNR and ΔR/ R on a DVD-RW disk. In the experiments the disk was spinning, and the linear velocity of the track under focus is 6 m/s. The mark length is 0.35 µm for ΔR/ R = 1.5%, 0.38 µm for ΔR/ R = 3.3%, 0.42 µm for ΔR/ R = 6.2%, and 0.5 µm for ΔR/ R = 13.6%.

Fig. 9
Fig. 9

Variations in the z component (E z ) of the E field along the track near a metallic disk in Ag1 at y = -140, -180, -210, -240, and -260 nm. The metallic disk is centered at (x, z) = (0, 0) and has a diameter of 240 nm. The incident beam is linearly polarized along the track.

Fig. 10
Fig. 10

Distribution of the y component of the Poynting vector in the x = 0 plane when the AgO x alloy in Ag1 becomes metallic in the region under the focused spot. The bright gray region stands for the high level, and the dark gray region represents the low level. The incident beam is linearly polarized along the Z axis.

Fig. 11
Fig. 11

Computed read signal as the focused beam moves from the mark centered at z = 0 to the spacer along a track in Ag2. In the track, a periodic mark pattern with a duty cycle of 50% is recorded. The mark size is 200 nm. The solid circles represent the read signal as the metallic disk in the SR layer is centered at the focused spot (shift = 0), and the open circles stand for the case in which the metallic disk is 100 nm behind the focused spot (shift = -100 nm). The incident beam is linearly polarized along the track.

Fig. 12
Fig. 12

Dependence of ΔR/ R on the size of the mark in Ag2. In the calculations, the metallic disk in the AgO x layer is centered in the focused spot, and its size is equal to that of the marks. The incident beam is linearly polarized along the track (E z polarization), perpendicular to the track (E x polarization), or circularly polarized.

Fig. 13
Fig. 13

ΔR/ R versus the size of the metallic disk in reading a periodic mark pattern in Ag2. The metallic disk is centered at the focused spot in the readout. The incident beam is circularly polarized.

Fig. 14
Fig. 14

Same as Fig. 12 but for Ag3. The incident beam is either linearly polarized perpendicular to the track (E x polarized) or along the track (E z polarized).

Fig. 15
Fig. 15

Same as Fig. 12 but for Ag4.

Fig. 16
Fig. 16

Schematic showing the pattern of 5 × 5 silver particles in the decomposed AgO x region. In the simulation, the Ag particles are placed periodically in the SR layer, having a period of 90 nm along the X axis and of 60 nm along the Z axis. Each particle has dimensions of 45 nm × 30 nm in the XZ plane.

Fig. 17
Fig. 17

Variations of the E z amplitude along the X axis (z = 0) and along the Z axis (x = 0) at y = -160 nm and -210 nm in Ag2. In the calculation, 5 × 5 Ag particles are dispersed in the SR layer under the focused spot, and the storage layer is fully crystalline. The incident beam is linearly polarized along the Z axis.

Fig. 18
Fig. 18

Dependence of ΔR/ R on the size of the mark in Ag2. In the calculation, the pattern of Ag particles in the SR layer is centered at the focused spot. The Ag particles pattern to yield the shown ΔR/ R value 4 × 2 at d mark = 90 nm, 5 × 3 at d mark = 135 nm, 5 × 3 at d mark = 180 nm, 5 × 4 at d mark = 225 nm, and 6 × 5 at d mark = 270 nm. The incident beam is circularly polarized.

Tables (5)

Tables Icon

Table 1 Complex Refractive Index ñ for Polycarbonate Substrate, ZnS-SiO 2 Dielectric Layer, Ge 2 Sb 2 Te 5 Storage Layer, Sb Layer, AgO x Alloy, and A1 Alloy Reflective Layer

Tables Icon

Table 2 Layer Structures of Sb1, Sb2, Sb3, and Sb4

Tables Icon

Table 3 Reflection Coefficients of Sb2, Sb3, and Sb4a

Tables Icon

Table 4 Layer Structures for Ag1, Ag2, Ag3, and Ag4

Tables Icon

Table 5 Reflection Coefficients of Ag2, Ag3, and Ag4a

Metrics