Abstract

We present an optoelectronic method to analyze three-dimensional (3D) scenes that is able to detect the presence, and also the position and orientation, of a reference 3D object. The data-acquisition procedure is based on digital holography. A phase-shifting interferometer records a single digital Fresnel hologram of the 3D scene with an intensity-recording device. Holographic information of the 3D reference object is also obtained with the same method. Correlation techniques are then applied to recognize the presence and position of the 3D reference object in the 3D scene. The technique also allows us to detect the 3D reference with a small out-of-plane rotation. Preliminary experimental results are presented that demonstrate the theory.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-Y. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
    [CrossRef] [PubMed]
  2. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  3. Ph. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  4. C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 373–382 (1997).
    [CrossRef]
  5. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998).
    [CrossRef]
  6. A. VanderLught, “Signal detection by complex matched spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  7. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  8. A. D. McAulay, Optical Computer Architectures (Wiley, New York, 1991).
  9. A. Mahalanobis, “Review of correlation filters and their application for scene matching,” in Optoelectronic Devices and Systems for Processing, B. Javidi, K. M. Johnson, eds., Vol. CR65 of SPIE Critical Reviews of Optical Science Technology, (SPIE Press, Bellingham, Wash., 1996), pp. 240–260.
  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  11. A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).
    [CrossRef]
  12. J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).
  13. J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964–966 (1997).
    [CrossRef] [PubMed]
  14. J. J. Esteve-Taboada, D. Mas, J. Garcia, “Three-dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760–4765 (1999).
    [CrossRef]
  15. T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
    [CrossRef]
  16. T. Kim, T.-C. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999).
    [CrossRef]
  17. B. Javidi, E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610–612 (2000).
    [CrossRef]
  18. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef] [PubMed]
  19. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  20. E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
    [CrossRef]
  21. J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
    [CrossRef]

2000 (2)

1999 (3)

1998 (1)

1997 (3)

1995 (1)

1994 (1)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

1993 (1)

1974 (1)

1971 (1)

J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).

1966 (1)

1965 (1)

J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
[CrossRef]

1964 (1)

A. VanderLught, “Signal detection by complex matched spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Brangaccio, D. J.

Bruning, J. H.

Bulabois, J.

J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).

Cooley, J. W.

J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
[CrossRef]

Denkewalter, R.

A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).
[CrossRef]

Esteve-Taboada, J. J.

Gallagher, J. E.

Garcia, J.

Goodman, J. W.

Guy, L. R.

J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).

Herriott, D. R.

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Itoh, M.

Javidi, B.

Kim, T.

T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
[CrossRef]

T. Kim, T.-C. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999).
[CrossRef]

Li, H.-Y.

Mahalanobis, A.

A. Mahalanobis, “Review of correlation filters and their application for scene matching,” in Optoelectronic Devices and Systems for Processing, B. Javidi, K. M. Johnson, eds., Vol. CR65 of SPIE Critical Reviews of Optical Science Technology, (SPIE Press, Bellingham, Wash., 1996), pp. 240–260.

Mas, D.

McAulay, A. D.

A. D. McAulay, Optical Computer Architectures (Wiley, New York, 1991).

Paek, E. G.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Poon, T.-C.

T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
[CrossRef]

T. Kim, T.-C. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999).
[CrossRef]

Psaltis, D.

A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).
[CrossRef]

H.-Y. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
[CrossRef] [PubMed]

Pu, A.

A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).
[CrossRef]

Qiao, Y.

Réfrégier, Ph.

Rosen, J.

Rosenfeld, D. P.

Tajahuerce, E.

Tukey, J. W.

J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
[CrossRef]

VanderLught, A.

A. VanderLught, “Signal detection by complex matched spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Viénot, J. Ch.

J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).

Watson, C. I.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Weaver, C. S.

White, A. D.

Wilson, C. L.

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Yamaguchi, I.

Yatagai, T.

Yoshikawa, N.

Zhang, T.

Appl. Opt. (6)

IEEE Trans. Inf. Theory (1)

A. VanderLught, “Signal detection by complex matched spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Math. Comput. (1)

J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).
[CrossRef]

Opt. Commun. (1)

J. Ch. Viénot, J. Bulabois, L. R. Guy, “Three dimensional object recognition in real time by multiplex spatial filtering,” Opt. Commun. 2, 431–434 (1971).

Opt. Eng. (3)

T. Kim, T.-C. Poon, “Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and Wigner analysis,” Opt. Eng. 38, 2176–2183 (1999).
[CrossRef]

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

A. Pu, R. Denkewalter, D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).
[CrossRef]

Opt. Lett. (5)

Other (4)

C. L. Wilson, C. I. Watson, E. G. Paek, “Combined optical and neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds. Proc. SPIE3073, 373–382 (1997).
[CrossRef]

A. D. McAulay, Optical Computer Architectures (Wiley, New York, 1991).

A. Mahalanobis, “Review of correlation filters and their application for scene matching,” in Optoelectronic Devices and Systems for Processing, B. Javidi, K. M. Johnson, eds., Vol. CR65 of SPIE Critical Reviews of Optical Science Technology, (SPIE Press, Bellingham, Wash., 1996), pp. 240–260.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Phase-shifting interferometer for recording the Fresnel digital hologram of a 3D object.

Fig. 2
Fig. 2

Reconstruction of the amplitude distribution at different distances from the digital hologram.

Fig. 3
Fig. 3

Reconstruction of the irradiance volume for two similar objects. The diffraction pattern generated at plane A by one object is similar to that generated at plane B by the other object.

Fig. 4
Fig. 4

Reconstruction of the amplitude distribution with different perspectives from different windows in the digital hologram.

Fig. 5
Fig. 5

Reconstruction of the irradiance volume with different perspectives. The diffraction patterns at planes A and B generated by the respective objects are similar.

Fig. 6
Fig. 6

Irradiance distribution of the reference object reconstructed at a distance z = 345 mm from the digital hologram.

Fig. 7
Fig. 7

Irradiance distribution of the input scene, containing two reference objects, at two distances: (a) z = 315 mm and (b) z = 345 mm.

Fig. 8
Fig. 8

Correlation of the irradiance distribution associated with the reference with that of the input scene for different distances: (a) correlation of the distribution in Fig. 6 with that in Fig. 7(a) and (b) correlation of Fig. 6 with Fig. 7(b).

Fig. 9
Fig. 9

Value of the correlation along the direction x′, which includes both local maxima in Fig. 8, for different propagation distances z.

Fig. 10
Fig. 10

Irradiance distribution of the input scene, containing only one reference object, at two distances: (a) z = 315 mm and (b) z = 345 mm.

Fig. 11
Fig. 11

Correlation of the irradiance distribution associated with the reference in Fig. 6 with that of the input scene in Fig. 10 for two distances: (a) correlation with the distribution in Fig. 10(a) and (b) correlation with the distribution in Fig. 10(b).

Fig. 12
Fig. 12

Irradiance distribution of the 3D input scene in Fig. 7, focused at z = 315 mm, for different perspective angles in the horizontal direction: (a) -0.9°, (b) 0°, and (c) 0.9°. Only the focused object is shown.

Fig. 13
Fig. 13

Correlation of the irradiance distribution associated with the reference in Fig. 6 with those of the input scene in Fig. 12. Labels (a), (b), and (c) correspond to the correlations with the respective distributions in Fig. 12.

Fig. 14
Fig. 14

Maximum value of the correlation between the reference in Fig. 6 and the input scene reconstructed with different angles of view. The normalized correlation peak is plotted versus the displacement of the window along the x axis in the digital hologram of the input object.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

HOx, y=AHx, yexpiϕHx, y=1iλ  -  Ox, y; z1zexpi 2πλ z×expi πλzx-x2+y-y2×dxdydz,
Ipx, y=AHx, y2+AR2+2AHx, yAR×cosϕHx, y-φR-Δφp.
ϕDx, y=ϕHx, y-φR=arctanI4x, y-I2x, yI1x, y-I3x, y.
ADx, y=AHx, yAR=14I1x, y-I3x, y2+I4x, y-I2x, y21/2.
UOx, y, z=1iλzexpi 2πλ z×-  HOx, yexpi πλzx-x2+y-y2dxdy.
UOx, y, z=--1λz-zexpi 2πλz-z×expiπλz-zx2+y2×-  Ox, y, zexpiπλz-z×x2+y2×expi2πλz-z×xx+yydxdydz.
UOx, y, z=--1λz¯expi 2πλ z¯×Ox, y, z+z¯expiπλz¯x2+y2dz¯,
Ox, y, z=Rx-a, y-b, z-c+Sx-a,y-b, z-c,
CORx, y, z=UOx, y, z*URx, y, z=CRRx, y, zδx-a, y-b, z-c+CSRx, y, zδx-a, y-b,z-c,
UOm, n, p=exp-iπλpΔzΔx2m2+Δy2n2×m=0Nx-1n=0Ny-1 Hm, n×exp-iπλpΔzΔx2m2+Δy2n2×exp-i2πmmNx+nnNy.
Δx=λzNxΔx,  Δy=λzNyΔy,
UOm, n, p=-1HOm, n×expiπλpΔzu2ΔxNx2+v2ΔyNy2,
CORm, n, p=-1UOm, n, p×*URm, n, p,
α=axΔxd,  β=ayΔyd.
UOm, n, p; α, β=-1HOm, n; αdΔx, βdΔy×expiπλpΔzu2ΔxNx2+v2ΔyNy2,
HOm, n; ax, ay=HOm, nrectm-axbx, n-ayby×expi2πλdaxΔx2m+ayΔy2n.

Metrics