Abstract

High-frequency phase polarization gratings are fabricated holographically in dichromated gelatin dyed with malachite green. It is observed that the intensity of the -1 diffracted beam is a sinusoidal function of the incident polarization angle. In addition, we analyze the dependence of the diffracted order polarization on grating frequency. It is evident from our results that form birefringence becomes significant when the grating period is smaller than the illumination wavelength, thus modifying the optically induced birefringence. Then, in polarization hologram reconstruction, it is not possible to obtain the polarization distribution at the recording step for high-frequency objects.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
    [CrossRef]
  2. S. D. Kakichashvili, “Polarizational (anisotropic-vectorial) hologram recording on practical photoanisotropic materials,” Sov. J. Quantum Electron. 42, 218–220 (1977).
  3. L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [CrossRef]
  4. S. D. Kakichashvili, “Polarization holography: possibilities and the future,” in Holography ’89, Y. N. Denisyuk, T. H. Jeong, eds., Proc. SPIE1183, 290–295 (1989).
    [CrossRef]
  5. S. Calixto, C. Solano, R. A. Lessard, “Real-time optical image processing and polarization holography with dyed gelatin,” Appl. Opt. 24, 2941–2947 (1985).
    [CrossRef] [PubMed]
  6. B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
    [CrossRef]
  7. T. Todorov, L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17, 358–359 (1992).
    [CrossRef] [PubMed]
  8. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujan, “Polarization holographic gratings in side-azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835–3840 (1996).
    [CrossRef] [PubMed]
  9. T. Huang, K. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–384 (1991).
  10. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989–1997 (1987).
    [CrossRef] [PubMed]
  11. C. Solano, R. A. Lessard, “Phase gratings formed by induced anisotropy in dyed gelatin plates,” Appl. Opt. 24, 1776–1779 (1985).
    [CrossRef] [PubMed]
  12. C. Solano, “Malachite green photosensitive plates,” Appl. Opt. 28, 3524–3527 (1989).
    [CrossRef] [PubMed]
  13. T. Huang, K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
    [CrossRef]
  14. S. Nikitine, “Considérations théoriques sur le photodicroïsm,” C. R. Acad. Sci. 204, 973–975 (1937).
  15. E. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 14.
  16. S. Habraken, Y. Rennote, St. Roose, E. Stijns, Y. Lion, “Design for polarizing holographic optical elements,” Appl. Opt. 34, 3595–3602 (1995).

1998 (1)

B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

1992 (1)

1989 (1)

1987 (1)

1985 (2)

1984 (1)

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

1977 (1)

S. D. Kakichashvili, “Polarizational (anisotropic-vectorial) hologram recording on practical photoanisotropic materials,” Sov. J. Quantum Electron. 42, 218–220 (1977).

1974 (1)

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

1937 (1)

S. Nikitine, “Considérations théoriques sur le photodicroïsm,” C. R. Acad. Sci. 204, 973–975 (1937).

Andruzzi, F.

Born, E.

E. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 14.

Calixto, S.

Fleck, B.

B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
[CrossRef]

Habraken, S.

Huang, T.

T. Huang, K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–384 (1991).

Hvilsted, S.

Ivanov, M.

Jahn, D.

B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
[CrossRef]

Kakichashvili, S. D.

S. D. Kakichashvili, “Polarizational (anisotropic-vectorial) hologram recording on practical photoanisotropic materials,” Sov. J. Quantum Electron. 42, 218–220 (1977).

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

S. D. Kakichashvili, “Polarization holography: possibilities and the future,” in Holography ’89, Y. N. Denisyuk, T. H. Jeong, eds., Proc. SPIE1183, 290–295 (1989).
[CrossRef]

Lessard, R. A.

Lion, Y.

Nikitine, S.

S. Nikitine, “Considérations théoriques sur le photodicroïsm,” C. R. Acad. Sci. 204, 973–975 (1937).

Nikolova, L.

Ramanujan, P. S.

Rennote, Y.

Roberge, P. C.

Roose, St.

Solano, C.

Stijns, E.

Todorov, T.

Wagner, K.

T. Huang, K. Wagner, “Holographic diffraction in photoanisotropic organic materials,” J. Opt. Soc. Am. A 10, 306–315 (1993).
[CrossRef]

T. Huang, K. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–384 (1991).

Wenke, L.

B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
[CrossRef]

Wolf, E.

E. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 14.

Appl. Opt. (6)

C. R. Acad. Sci. (1)

S. Nikitine, “Considérations théoriques sur le photodicroïsm,” C. R. Acad. Sci. 204, 973–975 (1937).

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

L. Nikolova, T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[CrossRef]

Opt. Comm. (1)

B. Fleck, D. Jahn, L. Wenke, “A nonlinear optical element for incoherent image subtraction based on photoanisotropy,” Opt. Comm. 154, 339–344 (1998).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (2)

S. D. Kakichashvili, “Method for phase polarization recording of holograms,” Sov. J. Quantum Electron. 4, 795–798 (1974).
[CrossRef]

S. D. Kakichashvili, “Polarizational (anisotropic-vectorial) hologram recording on practical photoanisotropic materials,” Sov. J. Quantum Electron. 42, 218–220 (1977).

Other (3)

S. D. Kakichashvili, “Polarization holography: possibilities and the future,” in Holography ’89, Y. N. Denisyuk, T. H. Jeong, eds., Proc. SPIE1183, 290–295 (1989).
[CrossRef]

T. Huang, K. Wagner, “Coupled mode analysis of dynamic polarization volume holograms,” in Photopolymer Device Physics, Chemistry, and Applications II, R. A. Lessard, ed., Proc. SPIE1559, 377–384 (1991).

E. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Superposition of two plane waves with orthogonal linear polarization vectors arriving symmetrically at a photoanisotropic emulsion. (b) The polarization ellipse modulation over the interference plane along the x axis is shown, δ = 2πfx.

Fig. 2
Fig. 2

Schematic of the experimental setup to measure the maximum intensity angle α M of the -1 diffraction order of a polarization grating.

Fig. 3
Fig. 3

Angle of maximum transmitted intensity α M of the diffracted order -1 versus the angle of incident polarization vector ψ r . Polarization gratings with periods greater than the illumination wavelength, λ r = 632.8 nm. (a) Λ = 1.75 λ r , and (b) Λ = 1.43 λ r .

Fig. 4
Fig. 4

Sinusoidal modulation of the normalized diffraction efficiency η/ηmax of diffracted order -1 versus the angle of incident polarization vector ψ r when Λ > λ r . ηmax is the maximum transmitted intensity for order -1.

Fig. 5
Fig. 5

Same as in Fig. 3 when polarization gratings have periods smaller than the illumination wavelength, λ r = 632.8 nm. (a) Λ = 0.83 λ r , and (b) Λ = 0.67 λ r .

Fig. 6
Fig. 6

Same as in Fig. 4 when Λ < λ r .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nx2=n02+κL1-L2,ny2=n02-κL1-L2,nz2=n02-κL1+L2,
=n02+2κ cos2πfx000n02-2κ cos2πfx000n02+2κ.
M=TψexpiΔϕ cos2δ00exp-iΔϕ cos2δ,

Metrics