Abstract

Optoacoustic imaging is a potential novel medical imaging technology to image structures in turbid media to depths of several millimeters with a resolution of some tens of micrometers. Thereby short laser pulses generate thermoelastic pressure waves inside a tissue, which are detected on the surface with a wideband ultrasonic transducer. Image reconstruction has the goal of calculating the distribution of the absorbing structures in the tissue. We present a method in which the acoustic field distribution is captured as a two-dimensional snapshot at the sample surface, using an optical-reflectance-based detection principle with a detection resolution of 20 µm. A new image reconstruction is accomplished by backprojection of the detected two-dimensional pressure distributions into the sample volume by use of the delay between the laser pulse and the time the snapshot was taken. Two-dimensional pressure-wave distribution and image reconstruction are demonstrated by simulations and experiments, in which small objects are irradiated with laser pulses of 6-ns duration. The method opens the possibility to irradiate the sample hidden in a light-scattering medium directly through the detector plane, thus enabling front-surface detection of the optoacoustic signals, which is especially important if structures close to the tissue surface have to be imaged. Reconstructed tomography images with a depth resolution of 20 µm and a lateral resolution of 200 µm are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Elliott, A. J. Thrush, “Measurement of resolution in intravascular ultrasound images,” Physiol. Meas. 17, 259–265 (1996).
    [CrossRef] [PubMed]
  2. L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).
  3. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  4. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).
  5. K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
    [CrossRef]
  6. C. G. A. Hoelen, F. F. M. de Mul, “Imaging of cutaneaous blood vessels using photoacoustic tissue scanning (PATS),” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 134–142 (1998).
    [CrossRef]
  7. B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .
  8. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef] [PubMed]
  9. A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
  10. P. C. Beard, T. N. Mills, “Characterization of post mortem tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42, 177–198 (1997).
    [CrossRef] [PubMed]
  11. G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
    [CrossRef]
  12. A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).
  13. G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).
  14. G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
    [CrossRef]
  15. V. E. Gusev, A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).
  16. G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
    [CrossRef]
  17. G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).
  18. G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
    [CrossRef]
  19. A. M. Evtyushenkov, F. K. Yu, “Determination of the dependence of liquid refractive index on pressure and temperature,” Opt. Spectrosc. 52, 56–58 (1982).
  20. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
    [CrossRef]
  21. L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974).
    [CrossRef]
  22. A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983).
    [CrossRef]

2000 (1)

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

1999 (1)

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

1998 (4)

G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).

1997 (3)

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

P. C. Beard, T. N. Mills, “Characterization of post mortem tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42, 177–198 (1997).
[CrossRef] [PubMed]

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

1996 (3)

G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
[CrossRef]

M. R. Elliott, A. J. Thrush, “Measurement of resolution in intravascular ultrasound images,” Physiol. Meas. 17, 259–265 (1996).
[CrossRef] [PubMed]

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

1994 (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

1986 (1)

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

1983 (1)

A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983).
[CrossRef]

1982 (1)

A. M. Evtyushenkov, F. K. Yu, “Determination of the dependence of liquid refractive index on pressure and temperature,” Opt. Spectrosc. 52, 56–58 (1982).

1974 (1)

L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974).
[CrossRef]

Andreev, V. G.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).

Beard, P. C.

P. C. Beard, T. N. Mills, “Characterization of post mortem tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42, 177–198 (1997).
[CrossRef] [PubMed]

Colston, B.

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

DaSilva, L.

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

de Mul, F. F. M.

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, “Imaging of cutaneaous blood vessels using photoacoustic tissue scanning (PATS),” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 134–142 (1998).
[CrossRef]

Dekker, A.

Diebold, G. J.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Elliott, M. R.

M. R. Elliott, A. J. Thrush, “Measurement of resolution in intravascular ultrasound images,” Physiol. Meas. 17, 259–265 (1996).
[CrossRef] [PubMed]

Esenaliev, R. O.

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).

Everett, M. J.

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

Evtyushenkov, A. M.

A. M. Evtyushenkov, F. K. Yu, “Determination of the dependence of liquid refractive index on pressure and temperature,” Opt. Spectrosc. 52, 56–58 (1982).

Frenz, M.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

Gusev, V. E.

V. E. Gusev, A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).

Guss, H.

G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
[CrossRef]

Hoelen, C. G. A.

C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, “Imaging of cutaneaous blood vessels using photoacoustic tissue scanning (PATS),” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 134–142 (1998).
[CrossRef]

Jacques, S. L.

Karabutov, A. A.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).

V. E. Gusev, A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).

Kil, K. Y.

L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).

Köstli, K. P.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

Letokhov, V. S.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Logan, B. F.

L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974).
[CrossRef]

Louis, A. K.

A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983).
[CrossRef]

Mills, T. N.

P. C. Beard, T. N. Mills, “Characterization of post mortem tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42, 177–198 (1997).
[CrossRef] [PubMed]

Natterer, F.

A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).

Paltauf, G.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

Podymova, N. B.

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Pongers, R.

Sathyam, U.

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

Schmidt-Kloiber, H.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

Shepp, L. A.

L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

Soo, L. J.

L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).

Sun, T.

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Sung, L. C.

L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).

Thrush, A. J.

M. R. Elliott, A. J. Thrush, “Measurement of resolution in intravascular ultrasound images,” Physiol. Meas. 17, 259–265 (1996).
[CrossRef] [PubMed]

Tittel, F. K.

Weber, H. P.

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

Yu, F. K.

A. M. Evtyushenkov, F. K. Yu, “Determination of the dependence of liquid refractive index on pressure and temperature,” Opt. Spectrosc. 52, 56–58 (1982).

Acustica (1)

G. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two and three dimensions,” Acustica 80, 339–351 (1994).

Appl. Opt. (1)

Appl. Phys. B (1)

A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).

Appl. Phys. Lett. (2)

G. Paltauf, H. Schmidt-Kloiber, H. Guss, “Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves,” Appl. Phys. Lett. 69, 1526–1528 (1996).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Optical method for two-dimensional ultrasonic detection,” Appl. Phys. Lett. 75, 1048–1050 (1999).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

L. A. Shepp, B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. Paltauf, H. Schmidt-Kloiber, M. Frenz, “Photoacoustic waves excited in liquids by fiber-transmitted laser pulses,” J. Acoust. Soc. Am. 104, 890–897 (1998).
[CrossRef]

J. Appl. Phys. (3)

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60, R83–R121 (1986).
[CrossRef]

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic infrared spectroscopy of soft tissue,” J. Appl. Phys. 88, 1632–1637 (2000).
[CrossRef]

G. Paltauf, H. Schmidt-Kloiber, “Measurement of laser-induced acoustic waves with a calibrated optical transducer,” J. Appl. Phys. 82, 1525–1531 (1997).
[CrossRef]

J. Inst. Electron. Eng. Korea S. (1)

L. J. Soo, L. C. Sung, K. Y. Kil, “A study of the high resolution ultrasound diagnostic system for dermatology,” J. Inst. Electron. Eng. Korea S. 35-S, 66–71 (1998).

Opt. Express. (1)

B. Colston, U. Sathyam, L. DaSilva, M. J. Everett, “Dental OCT,” Opt. Express. 3, 230–238 (1998), http://www.opticsexpress.org .

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. M. Evtyushenkov, F. K. Yu, “Determination of the dependence of liquid refractive index on pressure and temperature,” Opt. Spectrosc. 52, 56–58 (1982).

Phys. Med. Biol. (1)

P. C. Beard, T. N. Mills, “Characterization of post mortem tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol. 42, 177–198 (1997).
[CrossRef] [PubMed]

Physiol. Meas. (1)

M. R. Elliott, A. J. Thrush, “Measurement of resolution in intravascular ultrasound images,” Physiol. Meas. 17, 259–265 (1996).
[CrossRef] [PubMed]

Proc. IEEE (1)

A. K. Louis, F. Natterer, “Mathematical problems of computerized tomography,” Proc. IEEE 71, 379–389 (1983).
[CrossRef]

Other (5)

K. P. Köstli, M. Frenz, H. P. Weber, G. Paltauf, H. Schmidt-Kloiber, “Optoacoustic measurements of water, bone and cartilage with an infrared-OPO,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 310–318 (1999).

C. G. A. Hoelen, F. F. M. de Mul, “Imaging of cutaneaous blood vessels using photoacoustic tissue scanning (PATS),” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 134–142 (1998).
[CrossRef]

A. A. Oraevsky, V. G. Andreev, A. A. Karabutov, R. O. Esenaliev, “Two-dimensional opto-acoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 256–267 (1999).

G. Paltauf, H. Schmidt-Kloiber, K. P. Köstli, M. Frenz, “Two-dimensional recording of optoacoustic waves,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc. SPIE3601, 248–255 (1999).

V. E. Gusev, A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Stress distribution on a detector plane of a small absorber 310 ns after generation of the initial pressure distribution. The small absorber was experimentally approximated by the end of a small optical fiber, 410 µm above the detector plane in a high absorbing liquid. Positive pressure appears darker and negative pressure brighter than the background. Bar, 1 mm

Fig. 2
Fig. 2

Experimental setup including the pressure transducer (cw laser reflectance at the glass-prism–liquid interface) and the optical irradiating fiber for generating the thermoelastic pressure wave.

Fig. 3
Fig. 3

Relative signal change S in dependence of the undisturbed reflectance R opt(p′ = 0) of the cw laser: Theory versus experiment gives the calibration of the measurement setup. The theoretical signal variance was calculated for a pressure change p′ = +10.5 bar.

Fig. 4
Fig. 4

(a) Simulation of a pressure distribution in the xy plane of a small absorbing sphere (diameter d = 100 µm, distance over plane z = 4 mm) 2.8 µs after the initial laser pulse. The resolution is 40 pixel/mm (25 µm/pixel). The positive pressure occurs in the outer ring and the negative pressure in the inner ring exactly as in Fig. 1. (b) Backprojection shown as a zx tomography rectangular to the plane of (a). The sphere is situated in the center of the cross, marked with a dotted circle.

Fig. 5
Fig. 5

Measured pressure distributions of a cylindrical graphite absorber (diameter, 0.5 mm) placed with its rod axis 0.75 mm from the prism surface. Pressures are measured on an x–y plane at different delay times after the initial laser pulse. Bar, 1 mm

Fig. 6
Fig. 6

Reconstructed xy tomography images of the cylindrical graphite absorber (diameter d = 0.5 mm, 0.5 mm over the pressure transducer) at different heights over the glass prism. Bar, 1 mm.

Fig. 7
Fig. 7

Acoustic images from a grid formed of four hairs, acquired with the optical detector at different times after laser-pulse irradiation. The image size is 3.6 mm × 5.9 mm.

Fig. 8
Fig. 8

Reconstruction of the hair grid from acoustic images as shown in Fig. 7. The drawings show a top view of the grid and the location of the reconstruction planes, which are perpendicular to the detector plane. (a) Section through the two lower hairs, (b) section through the two upper hairs, (c) section along one of the lower hairs.

Fig. 9
Fig. 9

Vertical projection of two crossed gelatin vessels as pressure source for optoacoustic imaging. The heated volume represents the pressure source. The upper vessel is in the center shadowed from the lower vessel and therefore only a pressure source beside the lower vessel.

Fig. 10
Fig. 10

xz tomography picture of two crossed gelatin vessels as shown in Fig. 9. A linear gray scale is used. (a) Backprojection of positive and negative pressure. (b) After Fourier filtering of image (a) with a two-dimensional point-spread function.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

vs2Δϕ-2t2ϕ=-ΓρdivS,
px, t=-ρ ϕx, tt.
px, t=14πvst|x-x|=vstp0x|x-x|dσ.
px, t=tt4π|x-x|=vst p0xds,
pτ=t-|x-x|/vs=-p02|x-x|vsτ-a0vsτa0vs0elsewhere,
Bx, y=Iinx, yRoptpx, y,
Bcorrx, y=Bx, yB0x, y R0Īin=Roptx, yĪin.
Sp=Roptp-Roptp=0Roptp=0.
nw=nw,0+dnw/dp,
ri=x-x2+y-y21/2=vsti2-z21/2.
Ax, y, z=i ri wti, zvstipx, y, tidl,
zf=d2/4λac.
Ix, z=F-1FAx, ztfμ, ν+const,

Metrics