Abstract

Multienergy Cu+ ions with total dose of ∼1014 ions/cm2 were implanted into LiNbO3 crystals to form a nearly homogenous damage profile from the sample surface to the end of the ions’ track. The extraordinary refractive-index enhancement was found in the damage region by observation of the dark mode. The extraordinary index showed an increasing trend until the ion dose reached a critical value. The largest index enhancement was ∼0.0132. By use of low-dose ion implantation, we determined that the decreased spontaneous polarization caused the extraordinary index increase.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sjoberg, G. Arvidsson, A. A. Lipovskii, “Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate,” J. Opt. Soc. Am. B 5, 285–291 (1988).
    [CrossRef]
  2. J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [CrossRef]
  3. D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
    [CrossRef]
  4. L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
    [CrossRef]
  5. P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994), pp. 198–200.
  6. L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
    [CrossRef]
  7. J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
    [CrossRef]
  8. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  9. J. F. Ziegler, J. P. Biesack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), pp. 202–264.
  10. H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
    [CrossRef]
  11. W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
    [CrossRef]
  12. K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
    [CrossRef]
  13. R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]

2000

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

1995

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

1991

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

1988

1985

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1982

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

1978

K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
[CrossRef]

1974

D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
[CrossRef]

1973

Åhlfeldt, H.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Arvidsson, G.

Biesack, J. P.

J. F. Ziegler, J. P. Biesack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), pp. 202–264.

Bloom, L. R.

D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
[CrossRef]

Chandler, P. J.

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994), pp. 198–200.

Fukuma, M.

K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
[CrossRef]

Gaylord, T. K.

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Hou, W.

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

Hua, W.

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

Iwasaki, H.

K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
[CrossRef]

Jackel, J. L.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Lee, W. W.

D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
[CrossRef]

Lipovskii, A. A.

Littmark, U.

J. F. Ziegler, J. P. Biesack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), pp. 202–264.

Olivares, J.

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

Rams, J.

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

Rice, C. E.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Sjoberg, A.

Sugii, K.

K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
[CrossRef]

Tan, H.

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

Teat, S. J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Thomas, P. A.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Torge, R.

Townsend, P. D.

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994), pp. 198–200.

Ulrich, R.

Veselka, J. J.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Webjörn, J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

Wei, D. T. Y.

D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
[CrossRef]

Weis, R. S.

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Zhanf, Y.

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

Zhang, L.

L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994), pp. 198–200.

Ziegler, J. F.

J. F. Ziegler, J. P. Biesack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), pp. 202–264.

Appl. Opt.

Appl. Phys. A

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Appl. Phys. Lett.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

D. T. Y. Wei, W. W. Lee, L. R. Bloom, “Large refractive index change-induced by ion implantation in lithium niobate,” Appl. Phys. Lett. 25, 329–331 (1974).
[CrossRef]

Electron. Lett.

W. Hou, W. Hua, Y. Zhanf, H. Tan, “Possible mechanism for increase of extraordinary refractive index in proton-exchanged LiNbO3 waveguides,” Electron. Lett. 27, 755 (1991).
[CrossRef]

J. Appl. Phys.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77, 4467–4476 (1995).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, “Extra ‘strange’ modes in ion implanted lithium niobate waveguides,” J. Appl. Phys. 70, 1185–1189 (1991).
[CrossRef]

J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 87, 3199–3202 (2000).
[CrossRef]

J. Mater. Sci.

K. Sugii, M. Fukuma, H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods,” J. Mater. Sci. 13, 523–533 (1978).
[CrossRef]

J. Opt. Soc. Am. B

Nucl. Instrum. Methods Phys. Res. B

L. Zhang, P. J. Chandler, P. D. Townsend, “Optical analysis of damage profiles in ion implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 59/60, 1147–1152 (1991).
[CrossRef]

Other

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK, 1994), pp. 198–200.

J. F. Ziegler, J. P. Biesack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), pp. 202–264.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Extraordinary refractive index of the waveguide region versus implantation dose. Squares, experimental data. Solid curve is obtained by Eq. (3); x = 0.1, y = 0.175.

Fig. 2
Fig. 2

Rutherford backscattering–channeling spectra of sample 4. Dotted curve, aligned spectrum for the ion-implanted region.

Tables (1)

Tables Icon

Table 1 Parameters of Cu+-Ion-Implanted LiNbO3 Samplesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δnep=12ne3g33PS,02-PS,ion2.
n2-1/n2+2=αM/VM.
Δne=½ne3g33PS,021-1-d×x2-dxyn2+2×n2-1/6n,

Metrics