Abstract

A combination of stepwise graded refractive-index profiles and a cavity structure is used for designing narrow-bandpass filters of TiO2/SiO2 multilayer films upon BK7 glass substrates. Symmetrical profiles of stepwise graded refractive indices result in high transmittance of passbands for the designed filters. The bandwidth of the narrow-bandpass filter is controlled by adjustment of parameters such as the thickness and the number of layers in the multilayer stack. This design is proposed as a new and simple method for coating synthesis of optical filters.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Appl. Opt. 27, 1998–2205 (1988).
    [CrossRef] [PubMed]
  2. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 25, 457–460 (1985).
    [CrossRef]
  3. H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
    [CrossRef]
  4. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986), Chap. 8, 334–348.
  5. A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 27–32 (1986).
    [CrossRef]
  6. R. Richier, E. Pelletier, “Single-mode couplers through end coatings on optical fibers,” Appl. Opt. 32, 5541–5548 (1993).
    [CrossRef] [PubMed]
  7. C. Grezes-Besset, F. Chazallet, G. Albrand, E. Pelletier, “Synthesis and research of the optimum condition for the optical monitoring of non-quarter-wave multilayers,” Appl. Opt. 32, 5612–5618 (1993).
    [CrossRef]
  8. T. Hirai, “Functional gradient materials,” in Processing of Ceramics, R. J. Brook, ed., (VCH Verlagsgesellschaft GmbH, Weinheim, Germany, 1996), Part II, pp. 292–294.
  9. W. H. Southwell, R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989).
    [CrossRef] [PubMed]
  10. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989).
    [CrossRef] [PubMed]
  11. W. H. Southwell, “Extended-bandwidth reflector designs by using wavelets,” Appl. Opt. 36, 314–318 (1997).
    [CrossRef] [PubMed]
  12. X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
    [CrossRef]
  13. X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
    [CrossRef]
  14. S. Fujihara, Optical Thin Films (Kyoritsu, Tokyo, 1985).

1999 (1)

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

1998 (1)

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

1997 (1)

1993 (2)

1989 (2)

1988 (1)

1985 (1)

W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 25, 457–460 (1985).
[CrossRef]

1976 (1)

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

Albrand, G.

Bovard, B. G.

Chazallet, F.

Fornier, A.

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 27–32 (1986).
[CrossRef]

Fujihara, S.

S. Fujihara, Optical Thin Films (Kyoritsu, Tokyo, 1985).

Grezes-Besset, C.

Hall, R. L.

Hirai, T.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

T. Hirai, “Functional gradient materials,” in Processing of Ceramics, R. J. Brook, ed., (VCH Verlagsgesellschaft GmbH, Weinheim, Germany, 1996), Part II, pp. 292–294.

Macleod, H. A.

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986), Chap. 8, 334–348.

Masumoto, H.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Pelletier, E.

Richier, R.

R. Richier, E. Pelletier, “Single-mode couplers through end coatings on optical fibers,” Appl. Opt. 32, 5541–5548 (1993).
[CrossRef] [PubMed]

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 27–32 (1986).
[CrossRef]

Someno, Y.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Southwell, W. H.

Wang, X.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of TiO2/SiO2 multilayer optical filter with gradient refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

J. Vac. Sci. Technol. A (1)

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Design and experimental approach of optical reflection filters with graded refractive index profiles,” J. Vac. Sci. Technol. A 17, 206–211 (1999).
[CrossRef]

Thin Solid Films (1)

H. A. Macleod, “Thin film narrow band optical filters,” Thin Solid Films 34, 335–342 (1976).
[CrossRef]

Other (4)

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, London, 1986), Chap. 8, 334–348.

A. Fornier, R. Richier, E. Pelletier, “Realization of Fabry–Perot filters for wavelength demultiplexing,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. SPIE652, 27–32 (1986).
[CrossRef]

S. Fujihara, Optical Thin Films (Kyoritsu, Tokyo, 1985).

T. Hirai, “Functional gradient materials,” in Processing of Ceramics, R. J. Brook, ed., (VCH Verlagsgesellschaft GmbH, Weinheim, Germany, 1996), Part II, pp. 292–294.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relationship between the refractive index and the layer number of (a) a bandpass filter with stepwise graded refractive-index profiles and (b) a filter without them. (a) BK7–LABCDECFBGAH(LH)4L(2H)(LH)4LHLGAFBEDCBAL–air, (b) BK7–H(LH)10L(2H)(LH)10LH–air. A, B, C, D, E, F, G, H, and L are quarter-wave layers of the TiO2–SiO2 composite films with refractive indices 1.582, 1.714, 1.830, 1.942, 2.068, 2.170, 2.333, 2.435 and 1.471, respectively.

Fig. 2
Fig. 2

(a) Transmittance spectrum and (b) spectral responses to transmission loss of a bandpass filter with stepwise graded refractive-index profiles (solid curves) and a filter without them (dotted curves). Solid curves, BK7–LABCDECFBGAH(LH)4L2H(LH)4LHLGAFBEDCBAL–air; dotted curve, BK7–H(LH)10L2H(LH)10LH–air.

Fig. 3
Fig. 3

Relationship between the refractive index and the number of layers of (a) a bandpass filter with stepwise graded refractive-index profiles and (b) a three-cavity filter. (a) BK7–LABCDECFBGA2H(LH)4L2H(LH)4L2HLGAFBEDCBAL–air; (b) BK7–HLHLHL2H(LH)7L2H(LH)7L2HLHLHLH–air.

Fig. 4
Fig. 4

(a) Transmittance spectrum and (b) spectral responses to transmission loss of a bandpass filter with stepwise graded refractive-index profiles (solid curves) and a three-cavity filter (dotted curves). (a) BK7–LABCDECFBGA2H(LH)4L2H(LH)4L2HLGAFBEDCBAL–air; (b) BK7–HLHLHL2H(LH)7L2H(LH)7L2HLHLHLH–air.

Fig. 5
Fig. 5

(a) Transmittance spectrum and (b) spectral responses to transmission loss of three filters with different profiles of the graded refractive index. ln, BK7–ECFBGA2H(LH)4L2H(LH)4L2HLGAFBEDCBAL–air; rn, BK7–LABCDECFBGA2H(LH)4L2H(LH)4L2HLGAFBE–air; 2nF, BK7–ECFBGA2H(LH)4L2H(LH)4L2HLGAFBE–air.

Fig. 6
Fig. 6

(a) Transmittance spectra and (b) spectral responses to transmission loss of various kinds of designed filter with stepwise graded refractive-index profiles at a central wavelength of 800 nm. Filter formula, BK7–LABCDECFBGAxH(LH) m LyH(LH) m LxHLGAFBEDCBAL–air. (A), (B), (C), (D), and (E) represent x = 2, 4, 6, 8, 10, respectively, when m = 4 and y = 4.

Fig. 7
Fig. 7

(a) Transmittance spectra and (b) spectral responses to transmission loss of various kinds of designed filter with stepwise graded refractive-index profiles at a central wavelength of 800 nm. Filter formula, BK7–LABCDECFBGAxH(LH) m LyH(LH) m LxHLGAFBEDCBAL–air. (F), (G), (H), (I), and (J) represent x = 2, 4, 6, 8, respectively, when m = 3 and y = 6.

Fig. 8
Fig. 8

Transmittance spectra of various kinds of filters with stepwise graded refractive-index profiles at a central wavelength of 800 nm. Filter formula, BK7–LABCDECFBGAxH(LH) m LyH(LH) m LxHLGAFBEDCBAL–air. (K), (L), (M), (N), and (O) represent x = 2, 4, 6, 8, 10, respectively, when m = 2 and y = 8.

Fig. 9
Fig. 9

Transmittance spectra of narrow-bandpass filters with stepwise graded refractive-index profiles at central wavelengths of (a) 1300 nm and (b) 1500 nm. Filter formula, BK7–LABCDECFBGA8H(LH)3L6H(LH)3L8HLGAFBEDCBAL–air.

Tables (2)

Tables Icon

Table 1 Properties of TiO2–SiO2 Composite Films

Tables Icon

Table 2 Characteristics of the Transmittance Spectra of Narrow-Bandpass Filters of the Design Formula (BK7–LABCDECFBGAxH(LH) m LyH(LH) m LxHLGAFBEDCBAL–air)a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q BK7LABCDECFBGAxHLHmLyHLHmLxHLGAFBEDCBALair,
BK7LABCDECFBGAHLH4L2HLH4LHLGAFBEDCBALair.
BK7LABCDECFBGA2HLH4L2HLH4L2HLGAFBEDCBALair.
BK7ECFBGA2HLH4L2HLH4L2HLGAFBEDCBALair BK7LABCDECFBGA2HLH4L2HLH4L2HLGAFBEair, BK7ECFBGA2HLH4L2HLH4L2HLGAFBEair.

Metrics