Abstract

We propose using the anisotropic molecule dope method for synthesizing a zero-birefringence polymer that showed no orientational birefringence at any orientation degree of polymer chains. In this method a rodlike molecule with polarizability anisotropy was chosen to compensate orientational birefringence. The zero-birefringence polymer was synthesized by doping of 3-wt.% trans-stilbene as an anisotropic molecule into poly(methyl methacrylate). The zero-birefringence at the 590-nm wavelength in the drawn film and the injection-molded plate made from the zero-birefringence polymer was confirmed by the rotating parallel nicols method. Furthermore, high transparency (37.2 dB/km) of the zero-birefringence polymer at the 633-nm wavelength was confirmed by the light-scattering measurement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
    [CrossRef] [PubMed]
  2. Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
    [CrossRef]
  3. E. Bernacki, M. Mansuripur, “Investigation of substrate birefringence effects on optical-disk performance,” Appl. Opt. 32, 6547–6555 (1993).
    [CrossRef] [PubMed]
  4. Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
    [CrossRef] [PubMed]
  5. R. Hahn, J. H. Wendorff, “Compensation method for zero birefringence in oriented polymers,” Polymer 26, 1619–1622 (1985).
    [CrossRef]
  6. H. Saito, T. Inoue, “Chain orientation and intrinsic anisotropy in birefringence-free polymer blend,” J. Polym. Sci. B 25, 1629–1636 (1987).
    [CrossRef]
  7. S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
    [CrossRef]
  8. S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Transparent zero-birefringence copolymer and its optical properties,” Appl. Opt. 36, 4549–4555 (1997).
    [CrossRef] [PubMed]
  9. B. Jasse, J. L. Koenig, “Orientational measurements in polymers using vibrational spectroscopy,” J. Macromol. Sci. Rev. Macromol. Chem. C 17, 61–135 (1979).
    [CrossRef]
  10. Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
    [CrossRef]
  11. Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
    [CrossRef]
  12. G. H. Meeten, Optical Properties of Polymers (Elsevier, London, 1986), pp. 248–256.
  13. N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
    [CrossRef]
  14. P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949).
    [CrossRef]
  15. P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
    [CrossRef]
  16. T. Kaino, M. Fujiki, S. Oikawa, S. Nara, “Low-loss plastic optical fibers,” Appl. Opt. 20, 2886–2888 (1988).
    [CrossRef]

1997 (1)

1996 (1)

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

1995 (1)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

1994 (1)

1993 (1)

1989 (2)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
[CrossRef]

1988 (2)

1987 (1)

H. Saito, T. Inoue, “Chain orientation and intrinsic anisotropy in birefringence-free polymer blend,” J. Polym. Sci. B 25, 1629–1636 (1987).
[CrossRef]

1986 (1)

Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
[CrossRef]

1985 (1)

R. Hahn, J. H. Wendorff, “Compensation method for zero birefringence in oriented polymers,” Polymer 26, 1619–1622 (1985).
[CrossRef]

1979 (1)

B. Jasse, J. L. Koenig, “Orientational measurements in polymers using vibrational spectroscopy,” J. Macromol. Sci. Rev. Macromol. Chem. C 17, 61–135 (1979).
[CrossRef]

1957 (1)

P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

1949 (1)

P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949).
[CrossRef]

Anderson, H. R.

P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Bernacki, E.

Brumerger, H.

P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

Bueche, A. M.

P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949).
[CrossRef]

Debye, P.

P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949).
[CrossRef]

Fujiki, M.

Hahn, R.

R. Hahn, J. H. Wendorff, “Compensation method for zero birefringence in oriented polymers,” Polymer 26, 1619–1622 (1985).
[CrossRef]

Inoue, T.

H. Saito, T. Inoue, “Chain orientation and intrinsic anisotropy in birefringence-free polymer blend,” J. Polym. Sci. B 25, 1629–1636 (1987).
[CrossRef]

Ishigure, T.

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Iwata, S.

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Transparent zero-birefringence copolymer and its optical properties,” Appl. Opt. 36, 4549–4555 (1997).
[CrossRef] [PubMed]

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

Jasse, B.

Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
[CrossRef]

B. Jasse, J. L. Koenig, “Orientational measurements in polymers using vibrational spectroscopy,” J. Macromol. Sci. Rev. Macromol. Chem. C 17, 61–135 (1979).
[CrossRef]

Kaino, T.

Koenig, J. L.

B. Jasse, J. L. Koenig, “Orientational measurements in polymers using vibrational spectroscopy,” J. Macromol. Sci. Rev. Macromol. Chem. C 17, 61–135 (1979).
[CrossRef]

Koike, Y.

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Transparent zero-birefringence copolymer and its optical properties,” Appl. Opt. 36, 4549–4555 (1997).
[CrossRef] [PubMed]

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
[CrossRef]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Mansuripur, M.

Meeten, G. H.

G. H. Meeten, Optical Properties of Polymers (Elsevier, London, 1986), pp. 248–256.

Monerie, L.

Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
[CrossRef]

Nara, S.

Nihei, E.

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Transparent zero-birefringence copolymer and its optical properties,” Appl. Opt. 36, 4549–4555 (1997).
[CrossRef] [PubMed]

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
[CrossRef] [PubMed]

Ohtsuka, Y.

N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486–491 (1988).
[CrossRef] [PubMed]

Oikawa, S.

Saito, H.

H. Saito, T. Inoue, “Chain orientation and intrinsic anisotropy in birefringence-free polymer blend,” J. Polym. Sci. B 25, 1629–1636 (1987).
[CrossRef]

Takezawa, Y.

Tanio, N.

N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
[CrossRef]

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Tsukahara, H.

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Transparent zero-birefringence copolymer and its optical properties,” Appl. Opt. 36, 4549–4555 (1997).
[CrossRef] [PubMed]

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

Wendorff, J. H.

R. Hahn, J. H. Wendorff, “Compensation method for zero birefringence in oriented polymers,” Polymer 26, 1619–1622 (1985).
[CrossRef]

Zhao, Y.

Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
[CrossRef]

Appl. Opt. (5)

IEEE J. Lightwave Technol. (1)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” IEEE J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

J. Appl. Phys. (2)

P. Debye, A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518–525 (1949).
[CrossRef]

P. Debye, H. R. Anderson, H. Brumerger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys. 28, 679–683 (1957).
[CrossRef]

J. Macromol. Sci. Rev. Macromol. Chem. C (1)

B. Jasse, J. L. Koenig, “Orientational measurements in polymers using vibrational spectroscopy,” J. Macromol. Sci. Rev. Macromol. Chem. C 17, 61–135 (1979).
[CrossRef]

J. Polym. Sci. B (1)

H. Saito, T. Inoue, “Chain orientation and intrinsic anisotropy in birefringence-free polymer blend,” J. Polym. Sci. B 25, 1629–1636 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Iwata, H. Tsukahara, E. Nihei, Y. Koike, “Compensation for birefringence of oriented polymers by random copolymerization method,” Jpn. J. Appl. Phys. 35, 3896–3901 (1996).
[CrossRef]

Macromol. Chem. Macromol. Symp. (1)

Y. Zhao, B. Jasse, L. Monerie, “Fourier transform infrared study of orientation and relaxation in poly(methyl methacrylate),” Macromol. Chem. Macromol. Symp. 5, 87–97 (1986).
[CrossRef]

Macromolecules (1)

Y. Koike, N. Tanio, Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22, 1367–1373 (1989).
[CrossRef]

Polym. J. (1)

N. Tanio, Y. Koike, Y. Ohtsuka, “Inherent light scattering losses by amorphous optical polymer glasses,” Polym. J. 21, 259–266 (1989).
[CrossRef]

Polymer (1)

R. Hahn, J. H. Wendorff, “Compensation method for zero birefringence in oriented polymers,” Polymer 26, 1619–1622 (1985).
[CrossRef]

Other (1)

G. H. Meeten, Optical Properties of Polymers (Elsevier, London, 1986), pp. 248–256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mechanism of compensation for orientational birefringence by the anisotropic molecule dope method.

Fig. 2
Fig. 2

Molecular structure of trans-stilbene, which is an example of rodlike molecules with polarizability anisotropy.

Fig. 3
Fig. 3

Schematic diagram of the optical birefringence analyzer.

Fig. 4
Fig. 4

Schematic representation for molecular chain axis and transition moment vector M.

Fig. 5
Fig. 5

Experimental setup for the scattering measurements. ND, neutral density.

Fig. 6
Fig. 6

Typical angular dependence of the V V intensity for polymer bulk.

Fig. 7
Fig. 7

Compensation for birefringence of drawn PMMA films by doping trans-stilbene. The birefringence measurement was carried out at the 590-nm wavelength by the rotating parallel nicols method.

Fig. 8
Fig. 8

Orientation function f D of trans-stilbene (3-wt.%)-doped PMMA film as a function of draw ratio. 1388 cm-1, symmetric bending of C-αCH3; 692 cm-1, vertical bending of a phenyl group.

Fig. 9
Fig. 9

Photographs of the injection-molded polymers placed between crossed polarizers and schematic diagram of the mold with a side gate used for the injection molding. The injection-molded polymer samples were illuminated by a white-light source from behind.

Fig. 10
Fig. 10

Birefringence distribution of injection-molded PMMA and zero-birefringence polymer plates. Horizontal axis corresponds to the axis shown in Fig. 8(c). The birefringence measurement was carried out at the 590-nm wavelength by the rotating parallel nicols method.

Fig. 11
Fig. 11

The absorption spectrum of trans-stilbene in PMMA bulk. Optical pathlength, 1.0 cm; concentration of trans-stilbene, 3 wt.%.

Tables (2)

Tables Icon

Table 1 Conditions of the Injection Molding

Tables Icon

Table 2 Scattering Parameters of the Zero Birefringence

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δn=n-n,
Δα=αX-αY+αZ/2.
D=A/A,
fD=3cos2 θ-1/2,
fD=D-1D+22 cot2 α+22 cot2 α-1,
VV=VV1+VV2,
VV1iso=VV1-4/3HV.
α1isodB/km=1.16×104πVV1iso,
α2isodB/km=1.35×108a3η2n4λ4×b+22b2b+1-2b+2b3lnb+1,
b=16πa2/λ2,
αanisodB/km=3.86×104πHV.

Metrics