Abstract

We report on an attempt to use the enhancement effect of surface-plasmon resonance to improve the image quality of a waveguide hologram. With a structure consisting of a waveguide medium sandwiched between a metal film and a hologram, we obtained holographic images reconstructed by surface-plasmon-coupled waveguide modes. Comparison of the holographic images reconstructed by TM and TE modes indicates that the surface-plasmon effect is responsible for better image quality in diffraction efficiency and image contrast.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  3. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
    [CrossRef] [PubMed]
  4. B. Rothenhausler, W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  5. T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
    [CrossRef]
  6. H. Kano, S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
    [CrossRef] [PubMed]
  7. Q. Chen, X. Sun, I. R. Coddington, D. A. Goetz, H. J. Simon, “Reflected second-harmonic generation with coupled surface-plasmon modes in Ag/liquid/Ag layers,” J. Opt. Soc. Am. B 16, 971–975 (1999).
    [CrossRef]
  8. H. Kano, S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848–1850 (1996).
    [CrossRef] [PubMed]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  10. S. Maruo, O. Nakamura, S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343–2346 (1997).
    [CrossRef] [PubMed]
  11. T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
    [CrossRef]
  12. A. Wüthrich, W. Lukosz, “Holography with guided optical waves,” Appl. Phys. 21, 55–64 (1980).
    [CrossRef]
  13. D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
    [CrossRef]
  14. W. H. Weber, G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6, 122–124 (1981).
    [CrossRef] [PubMed]
  15. O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 19, 1645–1650 (1969).
    [CrossRef]
  16. W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
    [CrossRef]
  17. B. Cai, Integrated Optics (Dianzi University of Science and Technology of China, Chengdu, China, 1990), pp. 86–92.

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

1992 (1)

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

1991 (1)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

1988 (2)

1983 (1)

W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
[CrossRef]

1981 (1)

1980 (1)

A. Wüthrich, W. Lukosz, “Holography with guided optical waves,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

1976 (1)

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

1973 (1)

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

1969 (1)

O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 19, 1645–1650 (1969).
[CrossRef]

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Biehlig, W.

W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
[CrossRef]

Bryngdahl, O.

O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 19, 1645–1650 (1969).
[CrossRef]

Cai, B.

B. Cai, Integrated Optics (Dianzi University of Science and Technology of China, Chengdu, China, 1990), pp. 86–92.

Chen, Q.

Coddington, I. R.

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ford, G. W.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Goetz, D. A.

Hornauer, D.

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

Kano, H.

Kawata, S.

Knoll, W.

B. Rothenhausler, W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Koyama, J.

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Langbein, U.

W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
[CrossRef]

Lederer, F.

W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lukosz, W.

A. Wüthrich, W. Lukosz, “Holography with guided optical waves,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

Maruo, S.

Matsubara, K.

Minami, S.

Nakamura, O.

Nishihara, H.

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Raether, H.

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Rothenhausler, B.

B. Rothenhausler, W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Simon, H. J.

Suhara, T.

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

Sun, X.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Weber, W. H.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wüthrich, A.

A. Wüthrich, W. Lukosz, “Holography with guided optical waves,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

A. Wüthrich, W. Lukosz, “Holography with guided optical waves,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

Appl. Phys. B (1)

W. Biehlig, U. Langbein, F. Lederer, “Diffraction efficiencies of evanescent-wave holograms,” Appl. Phys. B 30, 87–94 (1983).
[CrossRef]

Biosens. Bioelectron. (1)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 19, 1645–1650 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

B. Rothenhausler, W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (3)

T. Suhara, H. Nishihara, J. Koyama, “Waveguide holograms: a new approach to hologram integration,” Opt. Commun. 19, 353–358 (1976).
[CrossRef]

D. Hornauer, H. Raether, “Light modes in thin polyurethane and LiF films,” Opt. Commun. 7, 297–301 (1973).
[CrossRef]

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Opt. Lett. (2)

Other (2)

B. Cai, Integrated Optics (Dianzi University of Science and Technology of China, Chengdu, China, 1990), pp. 86–92.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the principle of the holography by use of surface-plasmon-coupled waveguide modes.

Fig. 2
Fig. 2

Calculated (a) waveguide modes generated in PMMA layer coated on silver film and (b) enhancement of the electric field intensity in each mode. The following parameters were used in the calculations: the refractive index of the substrate and prism are 1.515; the reconstruction wavelength is 632.8 nm; the refractive indices and the thickness of the silver film and the PMMA layer are 0.0666 + i4.045, 1.5, 48 nm, and 895 nm, respectively.

Fig. 3
Fig. 3

Scheme for constructing the hologram. (a) Full view and (b) detailed diagram of the object wave. BE, beam expander; BS, beam splitter; M1 and M2, mirrors; L, imaging lens; O, object; f, focal length of the imaging lens; R, reference wave.

Fig. 4
Fig. 4

Photographs of the reconstructed holographic images by use of the waveguide modes with and without the coupled surface plasmons: (a) TM1, (b) TM2, (c) TE1.

Metrics