Abstract

Two-band algorithms that use the ratio of reflectances at 672 and 704 nm have already proved successful for chlorophyll a retrieval in a range of coastal and inland waters. An analysis of the effect of reflectance measurement errors on such algorithms is made. It provides important indications of the range of validity of these algorithms and motivates the development of an entirely new type of adaptive two-band algorithm for hyperspectral data, whereby the higher wavelength is chosen for each input spectrum individually. When one selects the wavelength at which reflectance is equal to the reflectance at the red chlorophyll a absorption peak, chlorophyll a retrieval becomes entirely insensitive to spectrally flat reflectance errors, which are typical of imperfect atmospheric correction, and is totally uncoupled from the retrieval or an estimation of backscatter. This new algorithm has been tested for Dutch inland and Belgian coastal waters.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  2. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).
  3. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  4. C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.
  5. K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.
  6. M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
    [CrossRef] [PubMed]
  7. J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
    [CrossRef]
  8. R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
    [CrossRef]
  9. H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).
  10. A. P. Vasilkov, “A retrieval of coastal water constituent concentrations by least-square inversion of a radiance model,” in Fourth International Conference on Remote Sensing for Marine and Coastal Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 2, pp. 107–116.
  11. S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
    [CrossRef]
  12. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
    [CrossRef]
  13. A. G. Dekker, “Detection of water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. dissertation (Vrije Universiteit, Amsterdam, The Netherlands, 1993).
  14. H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1133 (1999).
    [CrossRef]
  15. K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
    [CrossRef]
  16. H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
    [CrossRef]
  17. D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
    [CrossRef]
  18. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  19. R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).
  20. G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
    [CrossRef]
  21. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
    [CrossRef]
  22. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
    [CrossRef]
  23. C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
    [CrossRef]
  24. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  25. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
    [CrossRef]
  26. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
    [CrossRef]
  27. E. Aas, “Two-stream irradiance model for deep waters,” Appl. Opt. 26, 2095–2101 (1987).
    [CrossRef] [PubMed]
  28. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
    [CrossRef]
  29. R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
    [CrossRef]
  30. J. Krijgsman, “Optical remote sensing of water quality parameters,” Ph.D. dissertation (Technische Universiteit Delft, The Netherlands, 1994).
  31. R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.
  32. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
    [CrossRef]
  33. H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
    [CrossRef]
  34. H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  35. MERIS Scientific Advisory Group, “MERIS: the medium resolution imaging spectrometer,” (European Space Agency Publications, Noordwijk, The Netherlands, 1995).
  36. Nederlandse norm 6520, “Water: spectrofotometrische bepaling van het gehalte aan chlorofyl-a,” (Nederlands Normalisatie-instituut, Postbus 5059, 2600 GB Delft, The Netherlands, 1981).
  37. C. J. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12, 343–347 (1967).
    [CrossRef]
  38. H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
    [CrossRef]
  39. H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).
  40. I. Y. Kamov, “Adaptive algorithms for estimating the chlorophyll a content of phytoplankton from remote sensing of mesotrophic and eutrophic water objects,” Sov. J. Remote Sens. 10, (11)68–77 (1992).
  41. K. F. Palmer, D. J. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]

2000 (4)

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
[CrossRef]

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

1999 (5)

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1133 (1999).
[CrossRef]

D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

1998 (3)

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

1995 (1)

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

1994 (2)

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

1993 (2)

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

1992 (3)

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

I. Y. Kamov, “Adaptive algorithms for estimating the chlorophyll a content of phytoplankton from remote sensing of mesotrophic and eutrophic water objects,” Sov. J. Remote Sens. 10, (11)68–77 (1992).

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

1989 (1)

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

1987 (1)

1985 (1)

S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
[CrossRef]

1984 (1)

J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
[CrossRef]

1983 (1)

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1974 (1)

1967 (1)

C. J. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12, 343–347 (1967).
[CrossRef]

Aas, E.

Abril, G.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Aiken, J.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
[CrossRef]

Althuis, I. J. A.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

Antoine, D.

D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

Arnone, R. A.

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Babin, M.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

Bagheri, S.

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Billen, G.

C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.

Borges, A.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Borstad, G. A.

J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
[CrossRef]

Bourge, I.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Buiteveld, H.

H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Burger-Wiersma, T.

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

Canon, C.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Carder, K. L.

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Chovit, C.

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

Cleave, M. L.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Conel, J. E.

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

de Haan, J. F.

H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).

Dekker, A. G.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

A. G. Dekker, “Detection of water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. dissertation (Vrije Universiteit, Amsterdam, The Netherlands, 1993).

H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).

H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).

Delille, B.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Doerffer, R.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

Donze, M.

H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Eeckhout, D. V.

C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Faust, J.

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

Feldman, G. C.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Fischer, J.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

Frankignoulle, M.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Gentili, B.

Gitelson, A. A.

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

Gons, H. J.

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1133 (1999).
[CrossRef]

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

Gordon, H. R.

Gould, R. W.

R. W. Gould, R. A. Arnone, P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38, 2377–2383 (1999).
[CrossRef]

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Gower, J. F. R.

J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
[CrossRef]

Green, R. O.

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

Gregg, W. W.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Haan, J. F. d.

H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).

Hakvoort, J. M. H.

H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Hoogenboom, H. J.

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).

H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).

Hooker, S. B.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Hu, C.

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
[CrossRef]

Kamov, I. Y.

I. Y. Kamov, “Adaptive algorithms for estimating the chlorophyll a content of phytoplankton from remote sensing of mesotrophic and eutrophic water objects,” Sov. J. Remote Sens. 10, (11)68–77 (1992).

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
[CrossRef]

Kondratiev, K. Y.

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

Krijgsman, J.

J. Krijgsman, “Optical remote sensing of water quality parameters,” Ph.D. dissertation (Technische Universiteit Delft, The Netherlands, 1994).

Kuring, N.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Ladner, S.

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Lancelot, C.

C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Lavender, S. J.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
[CrossRef]

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

Libert, E.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Lin, S.

J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
[CrossRef]

Lorenzen, C. J.

C. J. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12, 343–347 (1967).
[CrossRef]

Margolis, J.

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

Maritorena, S.

Martinolich, P.

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Martinolich, P. M.

McClain, C. R.

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Mittenzwey, K. H.

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

Moore, G. F.

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
[CrossRef]

Morel, A.

D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Muller-Karger, F.

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
[CrossRef]

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
[CrossRef]

Otten, J. H.

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

Ovidio, F.

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Palmer, K. F.

Pegau, W. S.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Rijkeboer, M.

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Robinson, W.

Rousseau, V.

C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Ruddick, K. G.

K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897–912 (2000).
[CrossRef]

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

Siegel, D. A.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Stumpf, R.

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
[CrossRef]

Théate, J.-M.

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Ullrich, S.

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

Vasilkov, A.

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

Vasilkov, A. P.

A. P. Vasilkov, “A retrieval of coastal water constituent concentrations by least-square inversion of a radiance model,” in Fourth International Conference on Remote Sensing for Marine and Coastal Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 2, pp. 107–116.

Wang, M.

Williams, D. J.

Zaneveld, J. R. V.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Appl. Opt. (7)

Environ. Sci. Technol. (2)

H. J. Gons, M. Rijkeboer, S. Bagheri, K. G. Ruddick, “Optical teledetection of chlorophyll a in estuarine and coastal waters,” Environ. Sci. Technol. 34, 5189–5192 (2000).
[CrossRef]

H. J. Gons, “Optical teledetection of chlorophyll a in turbid inland waters,” Environ. Sci. Technol. 33, 1127–1133 (1999).
[CrossRef]

Hydrobiologia (1)

H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, “Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands),” Hydrobiologia 233, 51–59 (1992).
[CrossRef]

Int. J. Remote Sens. (4)

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

D. Antoine, A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[CrossRef]

G. F. Moore, J. Aiken, S. J. Lavender, “The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS,” Int. J. Remote Sens. 20, 1713–1734 (1999).
[CrossRef]

J. F. R. Gower, S. Lin, G. A. Borstad, “The information content of different optical spectral ranges for remote chlorophyll estimation in coastal waters,” Int. J. Remote Sens. 5, 349–364 (1984).
[CrossRef]

J. Geophys. Res. (4)

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13,321–13,332 (1995).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytical radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, “Semianalytical moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
[CrossRef]

J. Oceanogr. Soc. Jpn. (1)

S. Sugihara, M. Kishino, N. Okami, “Estimation of water quality parameters from irradiance reflectance using optical models,” J. Oceanogr. Soc. Jpn. 41, 399–406 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (4)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

K. H. Mittenzwey, A. A. Gitelson, S. Ullrich, K. Y. Kondratiev, “Determination of chlorophyll a of inland waters on the basis of spectral reflectance,” Limnol. Oceanogr. 37, 147–149 (1992).
[CrossRef]

C. J. Lorenzen, “Determination of chlorophyll and phaeopigments: spectrophotometric equations,” Limnol. Oceanogr. 12, 343–347 (1967).
[CrossRef]

Remote Sens. Environ. (2)

H. J. Hoogenboom, A. G. Dekker, I. J. A. Althuis, “Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters,” Remote Sens. Environ. 65, 333–340 (1998).
[CrossRef]

C. Hu, K. L. Carder, F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195–206 (2000).
[CrossRef]

Science (1)

M. Frankignoulle, G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, J.-M. Théate, “Carbon dioxide emissions from European estuaries,” Science 282, 434–436 (1998).
[CrossRef] [PubMed]

Sea Technol. (1)

C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, N. Kuring, “Science quality SeaWiFS data for global biosphere research,” Sea Technol. 39, 10–16 (1998).

Sov. J. Remote Sens. (1)

I. Y. Kamov, “Adaptive algorithms for estimating the chlorophyll a content of phytoplankton from remote sensing of mesotrophic and eutrophic water objects,” Sov. J. Remote Sens. 10, (11)68–77 (1992).

Other (12)

C. Lancelot, V. Rousseau, G. Billen, D. V. Eeckhout, “Coastal eutrophication of the Southern Bight of the North Sea: assessment and modelling,” in Sensitivity to Change: Black Sea, Baltic Sea, and North Sea, E. Ozsoy, A. Mikaelyan, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 437–454.

K. G. Ruddick, F. Ovidio, A. Vasilkov, C. Lancelot, V. Rousseau, M. Rijkeboer, “Optical remote sensing in support of eutrophication monitoring in Belgian waters,” in 18th EARSEL Symposium on Operational Remote Sensing for Sustainable Development, G. J. A. Nieuwenhuis, R. A. Vaughan, M. Molenaar, eds., (A. A. Balkema, Rotterdam, The Netherlands, 1998), pp. 445–452.

H. J. Hoogenboom, A. G. Dekker, J. F. d. Haan, “InveRSion: interpretation of reflectance for water quality assessment,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1997).

A. P. Vasilkov, “A retrieval of coastal water constituent concentrations by least-square inversion of a radiance model,” in Fourth International Conference on Remote Sensing for Marine and Coastal Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1997), Vol. 2, pp. 107–116.

R. A. Arnone, P. Martinolich, R. W. Gould, R. Stumpf, S. Ladner, “Coastal optical properties using SeaWiFS,” at Ocean Optics XIV in Kailua-Kona Haw., 10–13 November 1998, Ocean Optics XIV CD-ROM (Office of Naval Research, Washington, D.C., 1998).

A. G. Dekker, “Detection of water quality parameters for eutrophic waters by high resolution remote sensing,” Ph.D. dissertation (Vrije Universiteit, Amsterdam, The Netherlands, 1993).

H. J. Hoogenboom, A. G. Dekker, J. F. de Haan, “MERIS data simulation for water quality applications in tidal and inland waters,” (Instituut voor Milievraagstukken, Amsterdam, The Netherlands, 1998).

J. Krijgsman, “Optical remote sensing of water quality parameters,” Ph.D. dissertation (Technische Universiteit Delft, The Netherlands, 1994).

R. O. Green, J. E. Conel, J. Margolis, C. Chovit, J. Faust, “In-flight calibration and validation of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Sixth Annual JPL Airborne Earth Science Workshop (Jet Propulsion Laboratory, Pasadena, Calif., 1996), pp. 115–126.

H. Buiteveld, J. M. H. Hakvoort, M. Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
[CrossRef]

MERIS Scientific Advisory Group, “MERIS: the medium resolution imaging spectrometer,” (European Space Agency Publications, Noordwijk, The Netherlands, 1995).

Nederlandse norm 6520, “Water: spectrofotometrische bepaling van het gehalte aan chlorofyl-a,” (Nederlands Normalisatie-instituut, Postbus 5059, 2600 GB Delft, The Netherlands, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of an absorption spectrum for Belgian near-shore coastal waters for total particulates (upper, thick solid curve) and its components arising from tripton (lower, thin solid curve) and phytoplankton (dashed curve).

Fig. 2
Fig. 2

CRAT algorithm for a sample reflectance spectrum in case 2 water. A constant offset of the reflectance spectrum produces no difference in the critical wavelength λ2 c used by CRAT and hence from Eq. (24) no difference in the retrieved chlorophyll a concentration. The first band with a wavelength greater than 672 nm is shown for the medium resolution imaging spectrometer (MERIS) and the moderate resolution imaging spectrometer (MODIS) sensors for subsequent comparison with the CRAT approach.

Fig. 3
Fig. 3

Residual pure-water absorption coefficient a w ′ tabulated from the data of Buiteveld et al.34 (solid curve) and of Palmer and Williams41 (dotted curve) and the CRAT chlorophyll a concentration for the corresponding critical wavelength λ2 c , where parameters a w1 = 0.415 m-1 and a phy1* = 0.018 m2 mg-1 are used.

Fig. 4
Fig. 4

Simulated effect on chlorophyll a retrieval when using Eq. (8) of atmospheric-correction-type reflectance errors. For the 672:704-nm simulations are shown R 1 ε = 0.010, R 3 ε = 0.008 (filled markers) and R 1 ε = -0.010, R 3 ε = -0.008 (open markers) with b b0 = 0.1 m-1 (circles) and 1.0 m-1 (squares), and for the 667:748-nm algorithm the simulation R 1 ε = 0.010, R 3 ε = 0.008 with b b0 = 0.1 m-1 (triangles) is shown.

Fig. 5
Fig. 5

Simulated effect on chlorophyll a retrieval in Eq. (8) of sensor-noise-type reflectance errors: R 1 ε = R 3 ε = 0.0005 and R 2 ε = -0.0005 for the 672:704-nm algorithm with b b0 = 0.1 m-1 (circles) and 1.0 m-1 (squares) and for the 667:748-nm algorithm with b b0 = 0.1 m-1 (triangles), and 1.0 m-1 (diamonds).

Fig. 6
Fig. 6

Simulated effect on chlorophyll a retrieval of atmospheric-correction-type reflectance errors for the CRAT algorithm for R 1 ε = 0.010, R 3 ε = 0.008 (filled markers) and R 1 ε = -0.010, R 3 ε = -0.008 (open markers) and with b b0 = 0.1 m-1 (circles) and 1.0 m-1 (squares).

Fig. 7
Fig. 7

Comparison of chlorophyll a concentration derived from shipborne radiance measurements by the CRAT algorithm against water sample measurements. Circles, data for the IJssel Lagoon; triangles, data for Belgian coastal waters.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Rλ=f bbλaλ+bbλ,
aλ1=aw1+aphy1.
aλ2=aw2.
bbλ1=bbλ2=bb0.
γ=R2R1=aw1+aphy1+bb0aw2+bb0.
aphy1=γaw2+bb0-aw1-bb0.
aphy1*=aphy1C
C=aphy1aphy1*=1aphy1*γaw2+bb0-aw1-bb0.
bb0=aw3R3f-R3.
R1m=R1t+R1ε,
R2m=R2t+R2ε,
R3m=R3t+R3ε.
γm=R2mR1m,
bb0m=aw3R3mf-R3m,
Cm=1aphy1*γmaw2+bb0m-aw1-bb0m,
bb0ε=bb0m-bb0t=aw3R3t+R3εf-R3t+R3ε-aw3R3tf-R3t=aw3R3tf-R3t1+R3ε/R3t1-R3ε/f-R3t-1=bb0tR3εR3tff-R3t+ORεRt2,
γε=γm-γt=R2mR1m-R2tR1t=R2t+R1tR2εR1t+R1ε-R2tR1t =1R1tR2ε-γtR1ε1+R1ε/R1t=R2ε-γtR1εR1t+ORεRt2,
Cε=Cm-Ct =1aphy1*γmaw2+bb0m-γtaw2+bb0t-bb0m+bb0t =1aphy1*γεaw2+γmbb0m-γtbb0t-bb0ε=1aphy1*γεaw2+bb0t+γt-1bb0ε+O RεRt2 =1aphy1*R2ε-γtR1εR1taw2+bb0t+γt-1bb0tR3εR3tff-R3t+ORεRt2 =1aphy1* fbb0tR2ε-γtR1εR1tR2t+γt-1R3εR3tf-R3t+ORεRt2.
R1ε=R2ε=R3ε=Rε
Cε=1aphy1* fbb01-γ1R1R2-1R3f-R3Rε.
|Cε|=1aphy1*fbb0|R2ε|+γ|R1ε|R1R2+|γ-1||R3ε|R3f-R3.
Rλ2c=R1.
aw=aw2-aw1,
C=aw/aphy1*.

Metrics