Abstract

We present a new approach for the development of a highly stable optical fiber refractometer based on a path-matching differential interferometer. Exploiting a single-channel phase tracker and new synthetic heterodyne demodulations, one can eliminate the thermal drift on a piezoelectric transducer stack as a phase modulator by subtraction. A transducer in a differential Fabry–Perot refractometer is designed to compensate for the thermal effects not only from thermal expansion but also from the thermo-optic effect. The experimental data show that the refractive-index change in the sensing system can be kept at a level of approximately 5 × 10-4 without serious variations for a 1-h period of long-term monitoring associated with a temperature variation of from 25 to 50 °C. Accordingly, the proposed new system can be easily implemented and used as a long-term monitoring system for medical care applications such as monitoring patients during drug injection.

© 2001 Optical Society of America

Full Article  |  PDF Article

Errata

Yu-Lung Lo and Chin-Ho Chuang, "Differential optical fiber refractometer based on a path-matching differential interferometer with temperature compensation: erratum," Appl. Opt. 41, 5015-5015 (2002)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-41-24-5015

References

  • View by:
  • |
  • |
  • |

  1. R. S. Longhurst, Geometrical and Physical Optics, 3rd ed. (Longmans, London, 1962).
  2. H. Moosmüller, W. P. Arnott, “Folded Jamin interferometer: a stable instrument for refractive-index measurements,” Opt. Lett. 21, 438–440 (1996).
    [CrossRef] [PubMed]
  3. I. Hinkov, V. Hinkov, “Two-layer waveguiding structure in LiNbO3 with birefringence reversal for refractive-index sensors with large measurement range,” J. Lightwave Technol. 11, 554–559 (1993).
    [CrossRef]
  4. B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
    [CrossRef]
  5. G. J. Veldhuis, L. E. W. Van Der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857–863 (1999).
    [CrossRef]
  6. T. Takeo, H. Hattori, “Optical fiber sensor for measuring refractive index,” Jpn. J. Appl. Phys. 21, 1509–1512 (1982).
    [CrossRef]
  7. T. Takeo, H. Hattori, “Skin hydration state estimation using a fiber-optic refractometer,” Appl. Opt. 33, 4267–4272 (1994).
    [CrossRef] [PubMed]
  8. A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).
  9. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [CrossRef]
  10. Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
    [CrossRef]
  11. A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
    [CrossRef]
  12. Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for an optical fiber interferometry,” IEEE J. Quantum Electron. (to be published).
  13. B. Culshaw, J. Dakin, Optical Fiber Sensors: System and Applications (Artech House, Norwood, Mass., 1989), Vol. 2.
  14. P. G. Cielo, “Fiber optic hydrophone: improved strain configuration and environmental noise protection,” Appl. Opt. 18, 2933–2937 (1979).
    [CrossRef] [PubMed]
  15. H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1996).
  16. A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
    [CrossRef]
  17. C. C. Chang, J. S. Sirkis, “Design of fiber optic sensor systems for low velocity impact detection,” Smart Mater. Struct. 7, 166–177 (1998).
    [CrossRef]

2000

Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
[CrossRef]

1999

1998

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

C. C. Chang, J. S. Sirkis, “Design of fiber optic sensor systems for low velocity impact detection,” Smart Mater. Struct. 7, 166–177 (1998).
[CrossRef]

1997

A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).

1996

1994

1993

I. Hinkov, V. Hinkov, “Two-layer waveguiding structure in LiNbO3 with birefringence reversal for refractive-index sensors with large measurement range,” J. Lightwave Technol. 11, 554–559 (1993).
[CrossRef]

1982

T. Takeo, H. Hattori, “Optical fiber sensor for measuring refractive index,” Jpn. J. Appl. Phys. 21, 1509–1512 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
[CrossRef]

1979

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Arnott, W. P.

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
[CrossRef]

Burns, W. K.

A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
[CrossRef]

Chang, C. C.

C. C. Chang, J. S. Sirkis, “Design of fiber optic sensor systems for low velocity impact detection,” Smart Mater. Struct. 7, 166–177 (1998).
[CrossRef]

Chuang, C. H.

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for an optical fiber interferometry,” IEEE J. Quantum Electron. (to be published).

Cielo, P. G.

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensors: System and Applications (Artech House, Norwood, Mass., 1989), Vol. 2.

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensors: System and Applications (Artech House, Norwood, Mass., 1989), Vol. 2.

Dandridge, A.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
[CrossRef]

Domanski, A. W.

A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
[CrossRef]

Hattori, H.

T. Takeo, H. Hattori, “Skin hydration state estimation using a fiber-optic refractometer,” Appl. Opt. 33, 4267–4272 (1994).
[CrossRef] [PubMed]

T. Takeo, H. Hattori, “Optical fiber sensor for measuring refractive index,” Jpn. J. Appl. Phys. 21, 1509–1512 (1982).
[CrossRef]

Hinkov, I.

I. Hinkov, V. Hinkov, “Two-layer waveguiding structure in LiNbO3 with birefringence reversal for refractive-index sensors with large measurement range,” J. Lightwave Technol. 11, 554–559 (1993).
[CrossRef]

Hinkov, V.

I. Hinkov, V. Hinkov, “Two-layer waveguiding structure in LiNbO3 with birefringence reversal for refractive-index sensors with large measurement range,” J. Lightwave Technol. 11, 554–559 (1993).
[CrossRef]

Kersey, A. D.

A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
[CrossRef]

Kunz, R. E.

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Lai, H. Y.

Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
[CrossRef]

Lambeck, P. V.

Lo, Y. L.

Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
[CrossRef]

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for an optical fiber interferometry,” IEEE J. Quantum Electron. (to be published).

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics, 3rd ed. (Longmans, London, 1962).

Maisenholder, B.

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Moeller, R. P.

A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
[CrossRef]

Moosmüller, H.

Moser, M.

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Riel, P.

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Roszko, M.

A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Singh, H.

H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1996).

Sirkis, J. S.

C. C. Chang, J. S. Sirkis, “Design of fiber optic sensor systems for low velocity impact detection,” Smart Mater. Struct. 7, 166–177 (1998).
[CrossRef]

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Swillo, M.

A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).

Takeo, T.

T. Takeo, H. Hattori, “Skin hydration state estimation using a fiber-optic refractometer,” Appl. Opt. 33, 4267–4272 (1994).
[CrossRef] [PubMed]

T. Takeo, H. Hattori, “Optical fiber sensor for measuring refractive index,” Jpn. J. Appl. Phys. 21, 1509–1512 (1982).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
[CrossRef]

Van Der Veen, L. E. W.

Veldhuis, G. J.

Wang, W. C.

Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
[CrossRef]

Zappe, H. P.

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Appl. Opt.

Fiber Integr. Opt.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

IEEE J. Quantum Electron.

A. Dandridge, A. B. Tveten, T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron. 18, 1647–1652 (1982).
[CrossRef]

IEEE Proc. Sensing Process. Network

A. W. Domanski, M. Roszko, M. Swillo, “Compact optical fiber refractive index differential sensor for salinity measurements,” IEEE Proc. Sensing Process. Network. 2, 953–956 (1997).

J. Lightwave Technol.

G. J. Veldhuis, L. E. W. Van Der Veen, P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17, 857–863 (1999).
[CrossRef]

I. Hinkov, V. Hinkov, “Two-layer waveguiding structure in LiNbO3 with birefringence reversal for refractive-index sensors with large measurement range,” J. Lightwave Technol. 11, 554–559 (1993).
[CrossRef]

Jpn. J. Appl. Phys.

T. Takeo, H. Hattori, “Optical fiber sensor for measuring refractive index,” Jpn. J. Appl. Phys. 21, 1509–1512 (1982).
[CrossRef]

Opt. Lett.

Sens. Actuators B

Y. L. Lo, H. Y. Lai, W. C. Wang, “Developing stable optical fiber refractometers using PMDI with two-parallel Fabry–Perots,” Sens. Actuators B 62, 49–54 (2000).
[CrossRef]

Smart Mater. Struct.

C. C. Chang, J. S. Sirkis, “Design of fiber optic sensor systems for low velocity impact detection,” Smart Mater. Struct. 7, 166–177 (1998).
[CrossRef]

Other

H. Singh, “Strain and temperature sensing using optical fiber sensors,” Ph.D. dissertation (University of Maryland, College Park, Md., 1996).

A. D. Kersey, R. P. Moeller, T. A. Berkoff, W. K. Burns, “Single-channel phase-tracker for the open-loop fiber optic gyroscope,” in Fiber Optic Gyros: 15th Anniversary Conference, S. Ezekiel, E. Udd, eds., Proc. SPIE1585, 198–202 (1992).
[CrossRef]

Y. L. Lo, C. H. Chuang, “New synthetic-heterodyne demodulation for an optical fiber interferometry,” IEEE J. Quantum Electron. (to be published).

B. Culshaw, J. Dakin, Optical Fiber Sensors: System and Applications (Artech House, Norwood, Mass., 1989), Vol. 2.

R. S. Longhurst, Geometrical and Physical Optics, 3rd ed. (Longmans, London, 1962).

B. Maisenholder, H. P. Zappe, R. E. Kunz, M. Moser, P. Riel, “Optical refractometry using a monolithically integrated Mach–Zehnder interferometer,” in Proceedings of Transducers ’97, Ninth International Conference on Solid-State Sensors and Actuators, (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 79–80.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of PMDI.

Fig. 2
Fig. 2

Schematic diagram of the system.

Fig. 3
Fig. 3

Transducer design for compensation. ILFE, in-line Fabry–Perot etalon.

Fig. 4
Fig. 4

Basic schematic diagram of the signal-channel phase tracker. L.P.F., low-pass filter.

Fig. 5
Fig. 5

Basic schematic diagram of the new synthetic heterodyne.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Validation of stability.

Fig. 8
Fig. 8

Experimental results.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

IA+B cos2k0Lsensing-LPZTexp-σ2Lsensing-LPZT2A+B cos2k0Lsensing-LPZT,
IsensingA+B cosϕc cosωct+Δϕsensing, IreferenceA+B cosϕc cosωct+Δϕreference,
Δϕsensing4πλ0Δnwater+ΔnsLsensing+nwaterΔLsensing-nairΔLPZT),
Δϕreference4πλ0ΔnwaterLreference+nwaterΔLreference-nairΔLPZT,
Δϕsensing-Δϕreference4πλ0ΔnsLsensing.
I=A+B cosϕc cosωct+Δϕ,
I=A+BJ0ϕc+2 k=1-1kJ2kϕccos2kωct×cosΔϕ-2 k=0-1kJ2k+1ϕc×cos2k+1ωctsinΔϕ,
I=1/2BJ0ψc+ϕcsinΔψ+Δϕ+J0ψc-ϕcsinΔψ-Δϕ-2J0ψcJ0ϕcsinΔψcosΔϕ.
I=1/2BJ00.71sinΔϕ-Δψ=C sinΔϕ-Δψ,
I-BJ2ϕccosωctcosΔϕ.
IBJ3ϕc-J1ϕcsinωctsinΔϕ.
Iresult=I+I=CcosωctcosΔϕ+sinωctsinΔϕ=C cosωct-Δϕ,

Metrics