Abstract

Electrically controlled fiber variable-optical-attenuator arrays with polymer-network liquid crystals are shown to be compact and to have a large attenuation range (30–40 dB) and low residual loss (0.55 dB) at wavelengths from 1.3 to 1.6 µm. Their estimated power consumption is very low (<30 nW/channel), and arrays with more than ten channels can be made. The manufacturing process is simple: Trenches 30–100 µm wide are cut across parallel conductive-layer-coated optical fibers and are filled with a polymer-network liquid crystal. The attenuation properties depend on UV-curing conditions and on trench width.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.
  2. K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.
  3. N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.
  4. T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
    [CrossRef]
  5. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
    [CrossRef]
  6. T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).
  7. J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
    [CrossRef]
  8. K. Takizawa, K. Kodama, K. Kishi, “Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals,” Appl. Opt. 37, 3181–3189 (1998).
    [CrossRef]
  9. H. Yoda, S. Kawakami, “Verification of the process for composite integration between waveguides and liquid crystal,” Trans. Inst. Electron. Infor. Commun. Eng. C-I J82-C-1, 398–399 (1999).
  10. J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
    [CrossRef]
  11. K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  12. S. Matsui, T. Saito, J. Noda, “Low-loss in-line microfilter fabricated by precision trench machining,” Appl. Opt. 31, 1252–1256 (1992).
    [CrossRef] [PubMed]
  13. K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
    [CrossRef]

2001 (1)

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

1999 (1)

H. Yoda, S. Kawakami, “Verification of the process for composite integration between waveguides and liquid crystal,” Trans. Inst. Electron. Infor. Commun. Eng. C-I J82-C-1, 398–399 (1999).

1998 (5)

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).

J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
[CrossRef]

K. Takizawa, K. Kodama, K. Kishi, “Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals,” Appl. Opt. 37, 3181–3189 (1998).
[CrossRef]

1995 (1)

J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[CrossRef]

1993 (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

1992 (1)

Aizawa, M.

T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).

Amano, C.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Askyuk, V.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Barber, B.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Bishop, D.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Fujisawa, T.

T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).

Fukui, M.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

Fukushima, N.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Giles, C. R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Hattori, K.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

Hirabayashi, K.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Ishida, O.

N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.

Jaroszewiz, L. R.

J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
[CrossRef]

Jinno, M.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

Kawai, T.

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

Kawakami, S.

H. Yoda, S. Kawakami, “Verification of the process for composite integration between waveguides and liquid crystal,” Trans. Inst. Electron. Infor. Commun. Eng. C-I J82-C-1, 398–399 (1999).

Kishi, K.

Kitoh, T.

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

Klosowicz, J. S.

J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
[CrossRef]

Kodama, K.

Koga, M.

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.

Kurokawa, T.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Matsui, S.

Nakata, H.

T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).

Noda, J.

Nowinowski-Kruszelnicki, E.

J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
[CrossRef]

Oguchi, K.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

Oguma, M.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

Okuno, M.

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

Onaka, H.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Oton, J. M.

J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[CrossRef]

Pena, J. M.

J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[CrossRef]

Ruel, R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Saito, T.

Serrano, A.

J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[CrossRef]

Shirasaki, M.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Stulz, L.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Suzuki, H.

N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.

Suzuki, Y.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Takachio, N.

N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.

Takizawa, K.

Tokumatsu, T.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Tsuda, H.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

Wada, M.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Yoda, H.

H. Yoda, S. Kawakami, “Verification of the process for composite integration between waveguides and liquid crystal,” Trans. Inst. Electron. Infor. Commun. Eng. C-I J82-C-1, 398–399 (1999).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. M. Oton, J. M. Pena, A. Serrano, “Light-scattering spectral behaviour of liquid crystal dispersions in silica glasses,” Appl. Phys. Lett. 66, 929–931 (1995).
[CrossRef]

Electron. Lett. (1)

T. Kawai, M. Koga, M. Okuno, T. Kitoh, “PLC type compact VOA for photonic transport network,” Electron. Lett. 34, 264–265 (1998).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” IEEE J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber VOA arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS VOA,” IEEE Photon. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

IEICE Trans. Electron. C (1)

T. Fujisawa, H. Nakata, M. Aizawa, “The behavior of anchoring transition in polymer network liquid crystal films,” IEICE Trans. Electron. C E-81-C, 1675–1680 (1998).

Mol. Cryst. Liq. Cryst. (1)

J. S. Klosowicz, L. R. Jaroszewiz, E. Nowinowski-Kruszelnicki, “Optical effects in polymer-dispersed liquid crystal-fibre optic devices,” Mol. Cryst. Liq. Cryst. 321, 323–331 (1998).
[CrossRef]

Trans. Inst. Electron. Infor. Commun. Eng. C-I (1)

H. Yoda, S. Kawakami, “Verification of the process for composite integration between waveguides and liquid crystal,” Trans. Inst. Electron. Infor. Commun. Eng. C-I J82-C-1, 398–399 (1999).

Other (3)

N. Takachio, H. Suzuki, M. Koga, O. Ishida, “WDM linear repeater gain control scheme by automatic maximum power channel selection for photonic transport network,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 165–166.

K. Hattori, M. Fukui, M. Jinno, M. Oguma, K. Oguchi, “All-PLC-based optical ADM with high isolation and polarization independent level equalizer,” presented at the European Conference on Optical Communication, Madrid, Spain, 20–24 September, 1998.

N. Fukushima, H. Onaka, M. Shirasaki, Y. Suzuki, T. Tokumatsu, “Non-Mechanical Variable Attenuator Module Using the Faraday Effect,” in Optical Amplifiers and Their Applications, 1996 Program Committee, eds., Vol. 5 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 249–252.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulated relation between the scattering coefficient (NCS) and (LC multidomain diameter)/wavelength.

Fig. 2
Fig. 2

(a), (b) Polarizing microscope pictures and (c), (d) SEM pictures of PN LC polymer meshes. (a), (c) UV cured at 20 mW/cm2; (b), (d) UV cured at 2 mW/cm2.

Fig. 3
Fig. 3

Transmittance versus applied voltage for glass-sandwiched PN LC cured at (a) 2 mW/cm2 and (b) 20 mW/cm2. Open symbols, transmittance at 650 nm; filled symbols, transmittance at 1550 nm.

Fig. 4
Fig. 4

Structure of the LC VOA array.

Fig. 5
Fig. 5

Equal-voltage contour lines calculated when ±1 V is applied across (a) a 30-µm gap and (b) a 100-µm gap between fibers coated with aluminum or carbon.

Fig. 6
Fig. 6

Electric field around 30- and 100-µm gaps between the ends of aluminum- or carbon-coated fibers.

Fig. 7
Fig. 7

Gap-width dependence of the radiation loss between pairs of fibers with various spot-size diameters.

Fig. 8
Fig. 8

Fabrication of the VOA array.

Fig. 9
Fig. 9

SEM picture of the PN LC polymer mesh in the trenches cut apart at the trench of plastic V grooves. UV-cure power, 2 mW/cm2.

Fig. 10
Fig. 10

Open figures, loss, and filled figures, polarization dependence of the VOA elements. (a), (c) Cured under UV irradiation at 2 mW/cm2; (b), (d) cured under UV irradiation at 20 mW/cm2.

Fig. 11
Fig. 11

Dependence on applied voltage of noise (open circles) and fluctuations (δn) of LC molecules (filled circles).

Tables (1)

Tables Icon

Table 1 Properties of 12-µm-Thick Glass-Sandwiched PN LC Cells at a Wavelength of 1.55 µma

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T=exp-NCsL,
CS=24π3m2-1m2+22V2/λ4,
NCs=NV2/λ4=NV×V/λ4,
NCs=Qs/a, =2Qs/b,
radiation loss = 10 log101+λd2πnω/222,
loss dB=-4.3NCSL μm,
Cs=24π3V2λ4m21+δn2-1m21+δn2+22,=24π3V2λ4m2-1m2+22+4m2-1m2m2+22-4m2-12m2m2+23δn.
ΔLdB=10Lμmδn.

Metrics