Abstract

We report on permanent refractive-index changes as great as 6 × 10-3 in standard fibers on irradiation with tightly focused femtosecond (120-fs) near-IR (λ = 800-nm) pulses. The refractive-index increase was measured through changes in the transmission spectrum of an UV photowritten Bragg-grating-based Fabry–Perot interferometer. We depict the dependence of the index variation on exposure time. The changes in refractive index can be optimized after a few seconds of irradiation. The measured induced excess loss increases during near-IR exposure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  2. K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  3. K. O. Hill, G. Meltz, “Fiber Bragg grating technology: fundamental and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  4. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
    [CrossRef]
  5. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
    [CrossRef]
  6. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  7. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999).
    [CrossRef]
  8. A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.
  9. L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
    [CrossRef]
  10. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, K. K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999).
    [CrossRef]
  11. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
    [CrossRef]
  12. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
    [CrossRef]
  13. D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.
  14. P. A. Krug, R. Solte, R. Ulrich, “Measurement of index modulation along an optical fiber Bragg grating,” Opt. Lett. 20, 1767–1769 (1995).
    [CrossRef] [PubMed]

2000 (1)

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

1999 (3)

1997 (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology: fundamental and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

1996 (1)

1995 (2)

1993 (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

1989 (1)

1978 (1)

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Bayon, J. F.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Bernage, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
[CrossRef]

Boj, S.

Borrelli, N. F.

Brinjmeyer, E.

D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.

Cordier, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Corkum, P. B.

A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.

Davis, K. M.

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
[CrossRef]

Dong, L.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Douay, M.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
[CrossRef]

Ewald, A.

D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.

Franco, M.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Gaeta, A. L.

Glenn, W. H.

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology: fundamental and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Hirano, M.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Hirao, K.

Hirao, K. K.

Homoelle, D.

Hosono, H.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Jholen, D.

D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.

Johnso, D. C.

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Jujii, Y.

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawamura, K.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kazansky, P. G.

Kondo, Y.

Krug, P. A.

Legoubin, S.

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology: fundamental and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

Mitsuyu, T.

Miura, K.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Morey, W. W.

Mysyrowycz, A.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Naumov, A. Y.

A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.

Niay, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, E. Delevaque, “Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A 12, 1687–1694 (1995).
[CrossRef]

Nouchi, K.

Ogawa, T.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Poignant, H.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Poumellec, B.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Prade, B.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Przygodzki, C.

A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

Renner, H.

D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.

Sarukura, N.

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Smith, C.

Solte, R.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Sugimoto, N.

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Ulrich, R.

Watanabe, M.

Wielandy, S.

Xie, W. X.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Zhu, X.

A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.

Appl. Phys. B (1)

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, “Fabrication of surface relief gratings on transparent dielectric materials by a two-beam holographic method using infrared femtosecond laser pulses,” Appl. Phys. B 71, 119–121 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Jujii, D. C. Johnso, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Electron. Lett. (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191–1193 (1993).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology: fundamental and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, A. Mysyrowycz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Opt. Lett. (5)

Other (2)

D. Jholen, H. Renner, A. Ewald, E. Brinjmeyer, “Fiber Bragg grating Fabry–Perot interferometer for a precise measurement of the UV-induced index change,” in Proceedings of European Conference on Optical Communications, ECOC’98, Madrid, Spain, 1998, pp. 393–394.

A. Y. Naumov, C. Przygodzki, X. Zhu, P. B. Corkum, “Microstructuring with femtosecond laser inside silica glasses,” in Digest of Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), pp. 356–357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to measure the kinetics of the refractive-index change.

Fig. 2
Fig. 2

Effective refractive-index change (filled circles) and exposure-induced excess loss (open circles) as a function of irradiation time. (The effective length of the FP interferometer is 8 mm, and the length of the exposed part of the gap is 400 µm.)

Fig. 3
Fig. 3

Transmission spectrum of the 50-mm LPG with a grating period equal to 230 µm at 1000 °C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I0=2Pmln21/2/fRτπ3/2 w02,
Δn/n=Δλ/λleq/e,

Metrics