Abstract

The airborne lidar LEANDRE II, described in part I [Appl. Opt. 40, 3450–3461 (2001)], has been flown on the French Atmospheric Research Aircraft to perform lower-troposphere (0–3.5-km) measurements of the water-vapor mixing ratio. We present and discuss the method used for retrieval of the water-vapor mixing ratio and analyze systematic and random measurement errors in relation to instrument design and performance. The results of a series of test flights are presented. With a 0.8-km horizontal resolution and a 300-m vertical resolution, the standard deviation of the measurement error ranges from approximately 0.05 g kg-1 at 3.5 km to 0.3–0.4 g kg-1 near the ground, in agreement with the predicted random error. Comparisons with dew-point hygrometer measurements show a vertically averaged difference of ±0.15 g kg-1, approximately equal to the observed water-vapor variability.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, J. Pelon, “The airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). (LP17178).
  2. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
    [CrossRef]
  3. G. Mégie, R. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
    [CrossRef] [PubMed]
  4. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  5. C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  6. A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
    [CrossRef] [PubMed]
  7. A. Ansmann, J. Bosenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3476–3480 (1987).
  8. S. Ismail, E. V. Browell, “Influence of rotational Raman scattering in DIAL measurements,” in Proceedings of the Fourteenth International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds. (Istituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Florence, Italy, 1988), pp. 232–235.
  9. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
    [CrossRef] [PubMed]
  10. J. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef] [PubMed]
  11. C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).
  12. C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
    [CrossRef]
  13. J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.
  14. B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
    [CrossRef]
  15. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
    [CrossRef]
  16. C. Cahen, B. E. Grossmann, J. L. Lesne, J. Benard, G. Leboudec, “Intensities and atmospheric broadening coefficients measured for O2 and H2O absorption lines selected for DIAL monitoring of both temperature and humidity. 2. H2O,” Appl. Opt. 25, 4268–4271 (1986).
    [CrossRef]
  17. B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
    [CrossRef]
  18. B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
    [CrossRef]
  19. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).
  20. L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).

2001

2000

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

1998

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

1989

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

1987

A. Ansmann, J. Bosenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3476–3480 (1987).

1986

1985

1982

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

1981

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

1980

1974

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Ansmann, A.

A. Ansmann, J. Bosenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3476–3480 (1987).

A. Ansmann, “Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
[CrossRef] [PubMed]

Bates, T.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Benard, J.

Bevington, P. R.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).

Bosenberg, J.

A. Ansmann, J. Bosenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3476–3480 (1987).

Browell, E. V.

B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Influence of rotational Raman scattering in DIAL measurements,” in Proceedings of the Fourteenth International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds. (Istituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Florence, Italy, 1988), pp. 232–235.

Bruneau, D.

D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, J. Pelon, “The airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). (LP17178).

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Cahen, C.

C. Cahen, B. E. Grossmann, J. L. Lesne, J. Benard, G. Leboudec, “Intensities and atmospheric broadening coefficients measured for O2 and H2O absorption lines selected for DIAL monitoring of both temperature and humidity. 2. H2O,” Appl. Opt. 25, 4268–4271 (1986).
[CrossRef]

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.

Camy-Peyret, C.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
[CrossRef]

Chazette, P.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

Chevillard, J.-P.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
[CrossRef]

Flamant, C.

D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, J. Pelon, “The airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). (LP17178).

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

Flamant, P.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.

Flaud, J.-M.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
[CrossRef]

Frouin, R.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Gold, B.

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).

Grossmann, B.

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

Grossmann, B. E.

Ismail, S.

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, “Influence of rotational Raman scattering in DIAL measurements,” in Proceedings of the Fourteenth International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds. (Istituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Florence, Italy, 1988), pp. 232–235.

Johnson, J.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Klett, J.

Leboudec, G.

Lefrère, J.

J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.

Leon, J.-F.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Lesne, J. L.

Livingston, J.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Mandin, J.-Y.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
[CrossRef]

Mégie, G.

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

G. Mégie, R. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
[CrossRef] [PubMed]

J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.

Meissonnier, M.

Menzies, R.

Pelon, J.

D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, J. Pelon, “The airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40, 3450–3461 (2001). (LP17178).

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

Quaglia, P.

Quinn, P.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Rabiner, L. R.

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).

Robinson, D. K.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).

Saleh, B. E. A.

B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
[CrossRef]

Schotland, R. M.

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

Trouillet, V.

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

Appl. Opt.

J. Appl. Meteorol.

R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
[CrossRef]

C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

J. Geophys. Res.

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

J. Mol. Spectrosc.

J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The high-resolution spectrum of water vapor between 13 200 and 16 500 cm-1,” J. Mol. Spectrosc. 116, 167–172 (1986).
[CrossRef]

B. Grossmann, E. V. Browell, “Spectroscopy of water-vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadening and shifts, and temperature dependence of line-widths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
[CrossRef]

B. Grossmann, E. V. Browell, “Water-vapor broadening and shifting by air, nitrogen, oxygen and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Tellus

C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus 52B, 662–677 (2000).

Other

J. Lefrère, G. Mégie, C. Cahen, P. Flamant, “Evidence of spectral density limits in DIAL measurements of the humidity in the boundary layer,” extended abstracts of the XIIth International Radar Conference, G. Mégie, ed. (Service d’Aéronomie du Centre National de la Recherche Scientifique, Verrières-le-Buisson, France, 1984), pp. 161–163.

B. E. A. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
[CrossRef]

S. Ismail, E. V. Browell, “Influence of rotational Raman scattering in DIAL measurements,” in Proceedings of the Fourteenth International Laser Radar Conference, V. Cammelli, V. M. Sacco, eds. (Istituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Florence, Italy, 1988), pp. 232–235.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption cross-sectional correction term as a function of altitude for backscattering ratios R β = 1, 2, 5, 10, ∞ and the intermediate case: R β = 1 + R 0 exp(z/ zR), with R 0 = 5 and z R = 1.67 km.

Fig. 2
Fig. 2

Error in the absorption cross-sectional correction term as a function of altitude in the intermediate scattering case for emitter spectral positioning errors of -5 × 10-3 cm-1 (solid curve) and +5 × 10-3 cm-1 (dashed curve).

Fig. 3
Fig. 3

Retrieved water-vapor mixing ratio (solid curve) for off-line–off-line measurements. Dashed curves, mean value plus or minus the observed standard deviation.

Fig. 4
Fig. 4

Measurements from flight 31, 0835 UT: (a) lidar mean backscatter profile, (b) lidar mean water-vapor mixing ratio (solid curve). Dotted curves, mean value plus or minus the observed standard deviation; dashed curves, nearest in situ measurement.

Fig. 5
Fig. 5

Measurements from flight 31, 0906 UT: (a) Lidar mean backscatter profile, (b) lidar mean water-vapor mixing ratio (solid curve). Dotted curves, mean value plus or minus the observed standard deviation; dashed curves, nearest in situ measurement.

Fig. 6
Fig. 6

Measurements from flight 33, 0914 UT: (a) Lidar mean backscatter profile, (b) lidar mean water-vapor mixing ratio (solid curve). Dotted curves, mean value plus or minus the observed standard deviation; dashed and dashed–dotted curves, nearest in situ measurements.

Fig. 7
Fig. 7

Power spectrum of the on-line (solid curve) and off-line (dashed curve) signals of a series of 1024 successive shots at an altitude of 1.5 km during flight 33, 0914 UT.

Fig. 8
Fig. 8

Fractional standard deviation of the on-line and off-line signals during measurement of flight 33, 0914 UT: dashed curves, direct method; solid curves, spectral method.

Fig. 9
Fig. 9

Standard deviation of the mixing ratio during flight 33, 0914 UT: dashed curve, instrumental error according to the direct method; dotted–dashed curve, instrumental error according to the spectral method; solid curve, observed standard deviation including natural fluctuations.

Fig. 10
Fig. 10

Mixing-ratio corrections to the simplified method according to the complete algorithm for measurements of flight 31 at 0906 UT. Solid curve, total correction; dotted–dashed curve, correction owing to wavelength difference; dashed curve, Doppler broadening.

Tables (3)

Tables Icon

Table 1 Selected Absorption Lines

Tables Icon

Table 2 Detection Noise Contributions

Tables Icon

Table 3 Cross-Comparison of Lidar and In Situ Measurements during Flight 33 at 0914 UTa

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

nr=12σ¯ddrlnSoffrSonr,
ρz=12N0σ0cσzddrlnSoffzSonz,
cσz=T0P0σ0Pzσ¯zTz
ε=1-P1+Pexp-2τ-1,
ρr=12N0σ0ΔrlnSonr+Δr-lnSonr+lnSoffr-lnSoffr+Δr,
δρr=12N0σ0ΔrδSonr+ΔrSonr+Δr-δSonrSonr+δSoffrSoffr-δSoffr+ΔrSoffr+Δr.
varρr=12N0σ0Δr22 varncSonrSonr2+2 varncSoffrSoffr2,
σρ,ss=12N0σ0Δr2FSDon2+FSDoff21/2.
σρ=1Ns½Nr³/₂ σρ,ss=1Ns½Nr³/₂12N0σ0Δr2FSDon2+FSDoff21/2.
FSDopt=1/M,
varνT=varνD+varνB+varνS+varνE,
varνD=2eG2F2RL2Δf iD
varνB=2 ηe2hv G2F2RL2ΔfPB
varνS=2 ηe2hv G2F2RL2ΔfPS
PB=Eλcos Φ ρa exp-2τAθ22TinstΔλ,
1ΔzΔz ρzdz=0.06 g kg-1
1ΔzΔz ρ2zdz1/2=0.09 g kg-1.
1ΔzΔz σρzdz=0.17 g kg-1.
di,j=1ΔzΔz ρiz-ρjzdz
si,j=1ΔzΔz ρiz-ρjz2dz-di,j21/2
FSDon,off2z=varνTB+2eGF2RLΔfν¯on,offzν¯on,off2z,
FSDon,off2=ρon,offΔvν¯on,off2,
Soffr=ηoffEoffr2βar+βmrexp-2 0r αrdr,
Sonr=ηonEonr2βar+βmr×exp-2 0r αrdr×βarβar+βmr-+ lvτ2v, rdv+βmrβar+βmr×-+-+ lvτv, rmv-v, rdv×τv, rdv,
τv, r=exp-0r nrσv, rdr,
σ¯r=Srs¯r,
s¯r=12-+lv+bv, rsv, rdv,
bv, r=Rβr-1Rβr lv+1Rβr×-+ lvmv-v, rdv
Rβr=βmr+βarβmrβmr+βarβmr
ST=ST0T0T3/2 exp-Ek1T-1T0
sv, P, T=1πln2π1γCP, TγDT×-+exp-log2vγDT21+v-vγCP, Tdv,
γCP, T=γ0PP0T0Tt
γDT=v0c2 ln2kTm1/2
mv, P, T=ln2π1γmP, T×exp-ln2vγmP, T2,
γmP, T=BP, T2v0c2 ln2kTm1/2
nr=12σ¯rddrln-+ bv, rτv, rdv.
βa=βaλonλoffχa, βm=βmλonλoffχm, χa1.5, χm=4.
nr=12σ¯rλon-λoffλoffddrχaβar+χmβmrβar+βmr-2χaθaβar-2χmθmβmr,
gr1, r2, τ=gr1, r2gτ,
Ms-1=1A2A|gr1, r2|2dr1dr2,
Mt-1=2T20TT-τ|gτ|2dτ,
gr1, r2  J12πar/λd2πar/λd,
Ac=P|gr1, r2|2dr2=λ2d2πa2=λ2πθ2,
MsAAc=πθRλ2.
Gγω=exp-ω22γ2,
gγτ=exp-γ2τ2.
Mt-1γ=πγT ΘγT-1-exp-γ2T2γ2T2,
Θx=2π0xexp-t2dt
Gω=1Rβexp-ω22γm2+Rβ-1Rβexp-ω22γa2,
Mt-1=1Rβ2 Mt-1γm+2Rβ-1Rβ2 Mt-1γc+Rβ2-1Rβ2 Mt-1γa,
Gmω=k akGω+kΔω,
gmτ=k akgτexpjkΔωτ,
|gmτ|2=kk akak|gτ|2expjk-kΔωτ.
k ak2=2 log2π1/2N,
Mt-12 log2π1/21NRβ-1Rβ2πγaTΘγaT-1-exp-γa2T2γa2T2+πγmT1+22Rβ-1Rβ2.
si=2N+1k=i-Ni+N skrk-k=i-Ni+N skk=i-Ni+N rk2N+1k=i-Ni+N rk2-k=i-Ni+N rk2,
si=k=-NN ksi-k N3+N2+Nδr.
φk=kN3+N2+N.
Φv=2jN3+N2+Nk=1N k sinkπv.
Ψv=2πvN3+N2+Nk=1N k sinkπv.
NC54 N+13.

Metrics