Abstract

Spaceborne active lidar systems are under development to give new insight into the vertical distribution of clouds and aerosols in the atmosphere and to provide new information on variables required for improvement of forecast models and for understanding the radiative and dynamic processes that are linked to the dynamics of climate change. However, when they are operated from space, lidar systems are limited by atmospheric backscattered signals that have low signal-to-noise ratios (SNRs) on optically thin targets. Therefore specific methods of analysis have to be developed to ensure accurate determination of the geometric and optical properties of scattering layers in the atmosphere. A first approach to retrieving the geometric properties of semitransparent cloud and aerosol layers is presented as a function of false-alarm and no-detection probabilities for a given SNR. Simulations show that the geometric properties of thin cirrus clouds and the altitude of the top of the unstable atmospheric boundary layer can be retrieved with standard deviations smaller than 150 m for a vertical resolution of the lidar system in the 50–100-m range and a SNR of 3. The altitudes of the top of dense clouds are retrieved with a precision in altitude of better than 50 m, as this retrieval corresponds to a higher SNR value. Such methods have an important potential application to future spaceborne lidar missions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol. Soc. 71, 795–813 (1991).
    [CrossRef]
  2. O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995).
    [CrossRef]
  3. H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
    [CrossRef]
  4. K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
    [CrossRef]
  5. J. H. Seinfeld, S. N. Pandus, eds., Atmospheric Chemistry and Physics (Wiley, New York, 1998), p. 1326.
  6. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
    [CrossRef]
  7. S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
    [CrossRef]
  8. Z. Sorbjan, “Toward evaluation of heat fluxes in the convective boundary layer,” J. Appl. Meteorol. 34, 1092–1098 (1995).
    [CrossRef]
  9. C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
    [CrossRef]
  10. A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
    [CrossRef]
  11. G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987).
    [CrossRef]
  12. J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
    [CrossRef]
  13. S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
    [CrossRef]
  14. B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).
  15. W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
    [CrossRef]
  16. P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
    [CrossRef]
  17. A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994).
    [CrossRef]
  18. X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
    [CrossRef]
  19. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
    [CrossRef]
  20. M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998).
    [CrossRef]
  21. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
    [CrossRef]
  22. P. Chazette, G. Mégie, J. Pelon, “Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors,” Appl. Opt. 37, 7670–7679 (1998).
    [CrossRef]
  23. European Space Agency, “The Four Candidate Earth Explorer Mission: Earth Radiation Mission,” (European Space Agency, Munich, Germany, 1999).
  24. D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.
  25. P. Chazette, “Etude complémentaire des systèmes de télédétection laser et des sondeurs passifs pour la détermination des paramètres météorologiques à partir de plates-formes spatiales,” Ph.D. dissertation (University of Paris 7, Paris, 1990).
  26. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  27. M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1474 (1984).
    [CrossRef]
  28. S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
    [CrossRef]
  29. L. W. Carrier, G. A. Cato, K. J. Von Essen, “The backscattering and extinction of visible and infrared radiation by selected major cloud models,” Appl. Opt. 6, 1029–1216 (1967).
  30. E. P. Shettle, “Models of aerosols, clouds and precipitation for atmospheric propagation studies,” (Advisory Group for Aerospace Research and Development, Paris, 1989), p. 15.
  31. C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981).
    [CrossRef]
  32. K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).
  33. P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
    [CrossRef]
  34. C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
    [CrossRef]
  35. L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
    [CrossRef]
  36. C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
    [CrossRef]
  37. A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).
  38. C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurement,” J. Appl. Meteorol. 18, 1131–1143 (1979).
  39. F. Nicolas, L. R. Bissonnette, P. H. Flamant, “Lidar effective multiple-scattering coefficients in cirrus clouds,” Appl. Opt. 36, 3458–3468 (1997).
    [CrossRef] [PubMed]
  40. H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
    [CrossRef]
  41. R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.
  42. A. J. Heymsfied, “Cirrus uncinus generating cells and the evolution of cirriform clouds. II. The structure and circulation of the cirrus uncinus generating head,” J. Atmos. Sci. 4, 809–819 (1975).
    [CrossRef]
  43. A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
    [CrossRef]
  44. R. M. Measures, Laser Remote Sensing (Wiley/Interscience, New York, 1984).
  45. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
    [CrossRef]

2001 (1)

A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).

1999 (3)

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
[CrossRef]

1998 (5)

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998).
[CrossRef]

P. Chazette, G. Mégie, J. Pelon, “Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors,” Appl. Opt. 37, 7670–7679 (1998).
[CrossRef]

1997 (2)

F. Nicolas, L. R. Bissonnette, P. H. Flamant, “Lidar effective multiple-scattering coefficients in cirrus clouds,” Appl. Opt. 36, 3458–3468 (1997).
[CrossRef] [PubMed]

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

1996 (2)

C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

1995 (4)

X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
[CrossRef]

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995).
[CrossRef]

Z. Sorbjan, “Toward evaluation of heat fluxes in the convective boundary layer,” J. Appl. Meteorol. 34, 1092–1098 (1995).
[CrossRef]

1994 (2)

A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994).
[CrossRef]

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

1993 (3)

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
[CrossRef]

P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
[CrossRef]

1992 (1)

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).

1991 (1)

A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol. Soc. 71, 795–813 (1991).
[CrossRef]

1987 (2)

G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

1986 (1)

K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

1985 (3)

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
[CrossRef]

1984 (1)

M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1474 (1984).
[CrossRef]

1981 (2)

C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981).
[CrossRef]

B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).

1979 (1)

C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurement,” J. Appl. Meteorol. 18, 1131–1143 (1979).

1976 (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[CrossRef]

1975 (1)

A. J. Heymsfied, “Cirrus uncinus generating cells and the evolution of cirriform clouds. II. The structure and circulation of the cirrus uncinus generating head,” J. Atmos. Sci. 4, 809–819 (1975).
[CrossRef]

1967 (1)

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Albers, F.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

Arking, A.

A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol. Soc. 71, 795–813 (1991).
[CrossRef]

Baum, A. B.

A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994).
[CrossRef]

Bissonnette, L. R.

Boers, R.

R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.

Bonnel, B.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Boucher, O.

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995).
[CrossRef]

Brogniez, G.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

Browell, E. V.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Brown, P. R. A.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Browning, K. A.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Buriez, J. C.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Cahalan, R.

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

Carrier, L. W.

Cato, G. A.

Chazette, P.

P. Chazette, G. Mégie, J. Pelon, “Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors,” Appl. Opt. 37, 7670–7679 (1998).
[CrossRef]

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

P. Chazette, “Etude complémentaire des systèmes de télédétection laser et des sondeurs passifs pour la détermination des paramètres météorologiques à partir de plates-formes spatiales,” Ph.D. dissertation (University of Paris 7, Paris, 1990).

Chedin, A.

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

Chepfer, H.

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Cho, B. S.

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).

Chou, S. H.

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Clough, S. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Coackley, J. A.

B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).

Coakley, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Couch, R. H.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Couvert, P.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Davis, A.

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

Davis, A. B.

A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).

Desbois, M.

G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987).
[CrossRef]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981).
[CrossRef]

Doutriaux-Boucher, M.

M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998).
[CrossRef]

English, S. J.

S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
[CrossRef]

Eyre, J. R.

S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
[CrossRef]

Fenn, R. W.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Flamant, C.

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

Flamant, P. H.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

F. Nicolas, L. R. Bissonnette, P. H. Flamant, “Lidar effective multiple-scattering coefficients in cirrus clouds,” Appl. Opt. 36, 3458–3468 (1997).
[CrossRef] [PubMed]

Forichon, M.

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

Foucart, Y.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Garder, L. C.

W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
[CrossRef]

Gardner, C. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Goloub, P.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Gosset, M.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Hahn, C. J.

S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
[CrossRef]

Hänel, G.

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[CrossRef]

Hart, W. D.

R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.

Heck, P. M.

P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
[CrossRef]

Hemsfield, A. J.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Herman, M.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Hess, M.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Heymsfied, A. J.

A. J. Heymsfied, “Cirrus uncinus generating cells and the evolution of cirriform clouds. II. The structure and circulation of the cirrus uncinus generating head,” J. Atmos. Sci. 4, 809–819 (1975).
[CrossRef]

Hoff, R.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Illingworth, A. J.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Kent, G. S.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Koepke, P.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

LeTreut, H.

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

Li, Z. X.

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

Liao, X.

X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
[CrossRef]

Liou, K. N.

K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Lohman, U.

O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995).
[CrossRef]

London, J.

S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
[CrossRef]

MacFacquhar, G. M.

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

Marshak, A.

A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

McCormick, M. P.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley/Interscience, New York, 1984).

Mégie, G.

Melfi, S. H.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Menzies, R. T.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Minnis, P.

P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
[CrossRef]

Moulinier, P.

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

Nicolas, F.

Nicolet, M.

M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1474 (1984).
[CrossRef]

Palm, S. P.

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Parol, F.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Pelon, J.

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

P. Chazette, G. Mégie, J. Pelon, “Potential use of spaceborne lidar measurements to improve atmospheric temperature retrievals from passive sensors,” Appl. Opt. 37, 7670–7679 (1998).
[CrossRef]

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

Platt, C. M. R.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981).
[CrossRef]

C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurement,” J. Appl. Meteorol. 18, 1131–1143 (1979).

Randall, D. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Reagan, J. A.

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Rind, D.

X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
[CrossRef]

Rossow, W. B.

X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
[CrossRef]

W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
[CrossRef]

Sassen, K.

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).

Sauvage, L.

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

Schult, I.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

Scott, J. C.

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

Scott, N. A.

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

Sèze, G.

M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998).
[CrossRef]

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987).
[CrossRef]

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

E. P. Shettle, “Models of aerosols, clouds and precipitation for atmospheric propagation studies,” (Advisory Group for Aerospace Research and Development, Paris, 1989), p. 15.

Smith, J. A.

S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
[CrossRef]

Sorbjan, Z.

Z. Sorbjan, “Toward evaluation of heat fluxes in the convective boundary layer,” J. Appl. Meteorol. 34, 1092–1098 (1995).
[CrossRef]

Sphinhirne, J. D.

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

Spinhirme, J. D.

R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.

Trouillet, V.

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

Vanbauce, C.

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

Von Essen, K. J.

Walker, A. W.

W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
[CrossRef]

Warren, S. G.

S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
[CrossRef]

Whahiche, C.

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

Wielicki, B. A.

A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994).
[CrossRef]

B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).

Winker, D. M.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

Wiscombe, W.

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

Young, D. F.

P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
[CrossRef]

Adv. Geophys. (1)

G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
[CrossRef]

Appl. Opt. (3)

Bull. Am. Meteorol. Soc. (3)

A. Arking, “The radiative effects of clouds and their impact on climate,” Bull. Am. Meteorol. Soc. 71, 795–813 (1991).
[CrossRef]

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[CrossRef]

M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the Lidar In-Space Technology Experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993).
[CrossRef]

Geophys. Res. Lett. (1)

M. Doutriaux-Boucher, G. Sèze, “Significant changes between the ISCCP C and D cloud climatologies,” Geophys. Res. Lett. 25, 4193–4196 (1998).
[CrossRef]

Int. J. Remote Sens. (1)

J. C. Buriez, C. Vanbauce, F. Parol, P. Goloub, M. Herman, B. Bonnel, Y. Foucart, P. Couvert, G. Sèze, “Cloud detection and derivation of cloud properties from POLDER,” Int. J. Remote Sens. 18, 2785–2813 (1997).
[CrossRef]

J. Appl. Meteorol. (6)

B. A. Wielicki, J. A. Coackley, “Cloud retrieval using infrared sounder data: an error analysis,” J. Appl. Meteorol. 20, 37–49 (1981).

A. B. Baum, B. A. Wielicki, “Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors,” J. Appl. Meteorol. 33, 107–117 (1994).
[CrossRef]

Z. Sorbjan, “Toward evaluation of heat fluxes in the convective boundary layer,” J. Appl. Meteorol. 34, 1092–1098 (1995).
[CrossRef]

K. Sassen, B. S. Cho, “Subvisual-thin cirrus lidar data set for satellite verification and climatological research,” J. Appl. Meteorol.1275–1285 (1992).

P. R. A. Brown, A. J. Illingworth, A. J. Hemsfield, G. M. MacFacquhar, K. A. Browning, M. Gosset, “The role of spaceborne millimeter-wave radar in global monitoring of ice clouds,” J. Appl. Meteorol. 34, 2346–2366 (1995).
[CrossRef]

C. M. R. Platt, “Remote sounding of high clouds. I. Calculation of visible and infrared optical properties from lidar and radiometer measurement,” J. Appl. Meteorol. 18, 1131–1143 (1979).

J. Atmos. Sci. (4)

P. Minnis, P. M. Heck, D. F. Young, “Influence of cirrus cloud properties using satellite-observed visible and infrared radiances. II. Verification of theoretical cirrus radiative properties,” J. Atmos. Sci. 50, 1305–1322 (1993).
[CrossRef]

C. M. R. Platt, A. C. Dilley, “Remote sensing of high clouds. IV. Observed temperature variations in cirrus optical properties,” J. Atmos. Sci. 38, 1069–1082 (1981).
[CrossRef]

C. M. R. Platt, J. C. Scott, A. C. Dilley, “Remote sensing of high clouds. VI. Optical properties of midlatitude and tropical cirrus,” J. Atmos. Sci. 44, 729–747 (1987).
[CrossRef]

A. J. Heymsfied, “Cirrus uncinus generating cells and the evolution of cirriform clouds. II. The structure and circulation of the cirrus uncinus generating head,” J. Atmos. Sci. 4, 809–819 (1975).
[CrossRef]

J. Clim. (1)

W. B. Rossow, A. W. Walker, L. C. Garder, “Comparison of ISCCP and other cloud amounts,” J. Clim. 6, 2394–2418 (1993).
[CrossRef]

J. Clim. Appl. Meteorol. (4)

A. Chedin, N. A. Scott, C. Whahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
[CrossRef]

G. Sèze, M. Desbois, “Cloud cover analysis from satellite imagery using spatial and temporal characteristics of the data,” J. Clim. Appl. Meteorol. 26, 287–303 (1987).
[CrossRef]

S. H. Melfi, J. D. Sphinhirne, S. H. Chou, S. P. Palm, “Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean,” J. Clim. Appl. Meteorol. 24, 806–821 (1985).
[CrossRef]

S. G. Warren, C. J. Hahn, J. London, “Simultaneous occurrence of different cloud types,” J. Clim. Appl. Meteorol. 24, 658–667 (1985).
[CrossRef]

J. Climate (1)

H. LeTreut, M. Forichon, O. Boucher, Z. X. Li, “Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks,” J. Climate 11, 1673–1684 (1998).
[CrossRef]

J. Geophys. Res. (3)

X. Liao, W. B. Rossow, D. Rind, “Comparison between SAGE II and ISCCP high level clouds. 2. locating cloud tops,” J. Geophys. Res. 100, 1121–1135 (1995).
[CrossRef]

C. Flamant, V. Trouillet, P. Chazette, J. Pelon, “Wind speed dependence of the atmospheric boundary layer optical properties and ocean surface reflectance as observed by airborne backscatter lidar,” J. Geophys. Res. 103, 25,137–25,158 (1998).
[CrossRef]

A. Davis, A. Marshak, W. Wiscombe, R. Cahalan, “Multifractal characterizations of nonstationarity and intermittency in geophysical fields: observed, retrieved or simulated,” J. Geophys. Res. 99, 8055–8072 (1994).
[CrossRef]

M. Weather Rev. (2)

H. Chepfer, G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, J. Pelon, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 2. Microphysical modelling,” M. Weather Rev. 127, 504–519 (1999).
[CrossRef]

L. Sauvage, H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, F. Albers, “Remote sensing of cirrus radiative properties during EUCREX’94. Case study of 17 April 1994. 1. Observations,” M. Weather Rev. 127, 486–503 (1999).
[CrossRef]

Mon. Weather Rev. (1)

K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).
[CrossRef]

Nucl. Sci. Eng. (1)

A. B. Davis, A. Marshak, “Multiple scattering in clouds: insights from three-dimensional diffusion/P1 theory,” Nucl. Sci. Eng. 137, 251–280 (2001).

Planet. Space Sci. (1)

M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1474 (1984).
[CrossRef]

Proc. IEEE (1)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[CrossRef]

Q. J. R. Meteorol. Soc. (2)

C. Flamant, J. Pelon, “Atmospheric boundary-layer structure over the Mediterranean during a tramontane event,” Q. J. R. Meteorol. Soc. 122, 1741–1778 (1996).
[CrossRef]

S. J. English, J. R. Eyre, J. A. Smith, “A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction,” Q. J. R. Meteorol. Soc. 125, 2359–2378 (1999).
[CrossRef]

Tellus Ser. B (1)

O. Boucher, U. Lohman, “The sulfate–CCN–cloud albedo effect: a sensitivity study with two general circulation models,” Tellus Ser. B 47, 281–300 (1995).
[CrossRef]

Other (8)

J. H. Seinfeld, S. N. Pandus, eds., Atmospheric Chemistry and Physics (Wiley, New York, 1998), p. 1326.

E. P. Shettle, “Models of aerosols, clouds and precipitation for atmospheric propagation studies,” (Advisory Group for Aerospace Research and Development, Paris, 1989), p. 15.

European Space Agency, “The Four Candidate Earth Explorer Mission: Earth Radiation Mission,” (European Space Agency, Munich, Germany, 1999).

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Proceedings of the 20th International Laser Radar Conference, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

P. Chazette, “Etude complémentaire des systèmes de télédétection laser et des sondeurs passifs pour la détermination des paramètres météorologiques à partir de plates-formes spatiales,” Ph.D. dissertation (University of Paris 7, Paris, 1990).

F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance, computer code lowtran 6,” document (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).

R. Boers, J. D. Spinhirme, W. D. Hart, “High altitude lidar observation of marine stratocumulus clouds,” in Laser and Optical Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 84–87.

R. M. Measures, Laser Remote Sensing (Wiley/Interscience, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representation of the geometrical properties of the various scattering layers (clouds and ABL). The thickness Δz Ci of semitransparent cirrus-type cloud layers (Ci), the mean altitudes Z Cu, Z Ci, and Z ABL of dense cumulus-type clouds, semitransparent cirrus-type clouds, and the ABL are shown.

Fig. 2
Fig. 2

Diagram of the various simulation steps involved in retrieval of the geometrical parameter of scattering layers by a Monte Carlo statistical analysis.

Fig. 3
Fig. 3

Schematic representation of the ABL in the atmospheric model. The backscatter coefficient is plotted as a function of the altitude for two cases: stable and unstable ABLs.

Fig. 4
Fig. 4

SNR at the cloud bottom (SNR b ) as a function of backscatter coefficient β and the lidar system’s field of view. A SNR of 3 was assumed for the cloud-top signal.

Fig. 5
Fig. 5

Simulated lidar signal as a function of altitude in the presence of a 600-m thin cirrus cloud layer. The mean signal as simulated from the atmospheric model and the noise fluctuations are superimposed.

Fig. 6
Fig. 6

Representation of the PDFs of the cloud backscattered lidar signal (Cloud PDF) and of the noise level (Noise PDF).

Fig. 7
Fig. 7

Variation of the total probability of error for the direct method (see text) as a function of the normalized threshold for four values of the SNR.

Fig. 8
Fig. 8

Variation of the probabilities of false detection and of no detection as a function of the threshold value for a SNR of 3.

Fig. 9
Fig. 9

Representation of the altitude-dependent lidar signal after filtering and of the threshold level in the case of detection of a 600-m thin cirrus cloud.

Fig. 10
Fig. 10

(a) Probabilities of false detection and of no detection as functions of lidar vertical resolution Δz for a 600-m thin cirrus cloud. (b) Bias and standard deviation of the simulated measurements.

Fig. 11
Fig. 11

Bias and standard deviation of the mean altitude of a 600-m thin cirrus cloud as a function of SNR for several values of the extent of the filtering windows (n).

Fig. 12
Fig. 12

Bias, standard deviation, and probability of no detection as a function of the SNR for the measurement of stable and unstable ABLs.

Tables (2)

Tables Icon

Table 1 Suitable Parameters, System Noise, and Background Light for a Spaceborne Backscatter Lidar

Tables Icon

Table 2 Atmospheric Parameters Chosen for the Simulations

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

τkΔzCi2.
σi2=σmi2+σRi2,
SNRβ exp-2βΔzμφp.
SNRb=SNRt exp-2β2aμ2φp2+2βΔzμφp.
Si>X.
pn=1-Fcxs,
Fc=12πx2 expx22dx,
Pf=1-1-pfM,
Pn=1q-1!N-q!N-1!i=1q1-pni,
Sfk=12n+1i=k-nk+n Si-S¯σN2,
Fχ2x=12n+1/2Γn+12 ·x2n expx2,
Γx=0 ux-1 exp-udu,
Sf>Fχ2-11-pfmax2n+1,
Sλ, z=Cλzs-z2 βλ, π, z×exp-2μzzs αλ, z·dz+Nλ, z,
SNR=Sλ, z-Nλ, zσNλ, z,
SNRβλ, π, zexp-2μzzs αλ, zdz.
S¯λ, zn=CλΔzzs-zn2 μ·βλ, π, zn2ηdαpλ, zn1-exp-ηdμ·αpλ, znεΔzTλ, zn, zs+Nλ, z,
S¯ν, zn=CνΔzzs-zn2 μ βν, π, zn2ηdαν, zn Tν, zn, zs.
βpν, π, zn/2ηdαpν, zn=μφpν/2ηd.
βpν, π, z=βpCimax,

Metrics