Abstract

The storage density of shift-multiplexed holographic memory is calculated and compared with experimentally achieved densities by use of photorefractive and write-once materials. We consider holographic selectivity as well as the recording material’s dynamic range (M/#) and required diffraction efficiencies in formulating the calculations of storage densities, thereby taking into account all major factors limiting the raw storage density achievable with shift-multiplexed holographic storage systems. We show that the M/# is the key factor in limiting storage densities rather than the recording material’s thickness for organic materials in which the scatter is relatively high. A storage density of 100 bits/µm2 is experimentally demonstrated by use of a 1-mm-thick LiNbO3 crystal as the recording medium.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  3. D. Lande, S. S. Orlov, A. Akella, L. Hesselink, R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997).
    [CrossRef]
  4. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  5. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  6. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [CrossRef]
  7. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  8. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  9. H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]
  10. J. R. Wullert, Y. Lu, “Limits of the capacity and density of holographic storage,” Appl. Opt. 33, 2192–2196 (1994).
    [CrossRef]
  11. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  12. D. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers (World Scientific, London, 1999).
  13. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]

1998

1997

D. Lande, S. S. Orlov, A. Akella, L. Hesselink, R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

1996

1994

1963

Adibi, A.

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

Barbastathis, G.

Burr, G. W.

Buse, K.

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Campbell, S.

Coley, D.

D. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers (World Scientific, London, 1999).

Curtis, K.

Dhar, L.

Furukawa, Y.

Guenther, H.

Hesselink, L.

Hill, A.

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Kitamura, K.

Lande, D.

Levene, M.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[CrossRef] [PubMed]

Lu, Y.

Macfarlane, R.

Mok, F. H.

Neurgaonkar, R.

Neurgaonkar, R. R.

Orlov, S. S.

Psaltis, D.

Pu, A.

Schilling, M.

Solomatine, I.

Steckman, G. J.

Tackitt, M.

van Heerden, P. J.

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Wilson, W.

Wullert, J. R.

Zhou, G.

Appl. Opt.

J. Imaging Sci. Technol.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Nature

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Lett.

Other

D. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers (World Scientific, London, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Typical configuration for a shift-multiplexed holographic storage system.

Fig. 2
Fig. 2

Reference beam geometry used to compute the area occupied on a recording material’s surface.

Fig. 3
Fig. 3

Diffraction from a SLM forming the Fourier plane of the signal beam.

Fig. 4
Fig. 4

Geometry of the signal beam to compute the area covered on a recording material’s surface.

Fig. 5
Fig. 5

(a) Holographic data-storage system used for shift multiplexing with PQ-doped PMMA. (b) Photograph of the system used for shift multiplexing with LiNbO3:Fe, without the additional filtering stage.

Fig. 6
Fig. 6

Shift selectivity of multiple holograms recorded with shift multiplexing in a 1-mm-thick LiNbO3 crystal. Each hologram was recorded with a separation of 7.8 µm.

Fig. 7
Fig. 7

Left, center, and right sides of a reconstructed hologram for the 100-bits/µm2 experiment with LiNbO3.

Fig. 8
Fig. 8

Storage density in LiNbO3 computed as a function of the material thickness with the following parameters: θ s = 35 deg, θ r = 35 deg, ϕ = 48 deg, M/# = 1 mm, λ = 488 nm, f = 50 mm, A = 35 mm, b = 45 µm, P = 2, and η = 4.4 × 10-6. The inset shows the same result over an extended range of material thickness in millimeters.

Fig. 9
Fig. 9

Simulation of the storage density of PQ-doped PMMA as a function of thickness for the optical system shown in Fig. 5.

Fig. 10
Fig. 10

Theoretical storage density for various wavelengths and material thicknesses as a function of increasing M/#.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

x-xi2ai2+y2bi2=1,
a1r=zf2tanθ+ϕ/2-tanθ-ϕ/2,b1r=zftanϕ/2cosθ,x1r=xf+a1r+zr tanθ-ϕ/2,
ϕ1=arcsinsinθ-ϕ/2n,ϕ2=arcsinsinθ+ϕ/2n.
a2r=a1r+L2tanϕ2+tanϕ1,b2r=b1r+L tanarcsinsinϕ/2n,x2r=x1r+L2tanϕ1+tanϕ2.
N=Ab-2λfb2.
Np=πNb22b2=π4 N2.
ϕs=Nb2f.
W=2λfb.
ϕse=Nbf,xs=λfbsinθs-ϕse/2sinϕse/2,zs=λfbcosθs-ϕse/2sinϕse/2.
a1s=zs2tanθs+ϕse/2-tanθs-ϕse/2,b1s=zstanϕse/2cosθs,x1s=xs-a1s-zs tanθs-ϕse/2.
ϕ1s=arcsinsinθs-ϕse/2n,ϕ2s=arcsinsinθs+ϕse/2n.
a2s=a1s+L2tanϕ2s+tanϕ1s,b2s=b1s+L tanarcsinsinϕse/2n,x2s=x1s+L2tanϕ1s+tanϕ2s.
Wip=2a2r.
Wip=min|x2r+a2r-x2s-a2s|,|x2r-a2r-x2s+a2s|.
Wop=2b2s.
δs=Pλ cosθsizf+L2nL cos2θrisinθsi+θri+λ2 sinϕr/2,
δs=Pλ cosϕ1szf+L2nL cos2θrisinϕ1s+θri+λ2 sinϕr/2.
η=M/#M2,
δM=WipM/2,
D=NpmaxδM, δsWop/2.

Metrics