Abstract

Modules that perform photorefractive two-beam coupling operations have been built, characterized, and tested. These portable modules, interconnected by fiber optics, dispense with the need for repeated alignment and greatly facilitate the prototyping of complex signal- or image-processing photorefractive circuits. To evaluate the performance of the modules in a photorefractive circuit, we interconnected them in the feature extractor configuration: a ring configuration composed of two modules that selects the strongest signal within the signals presented on its input. With two signals at the input, an output contrast ratio of 45.4 dB is obtained for an input contrast ratio of 5 dB.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef] [PubMed]
  2. See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).
  3. J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
    [CrossRef]
  4. P. Yeh, “Theory of unidirectional photorefractive resonators,” J. Opt. Soc. Am. B 2, 1924–1928 (1985).
    [CrossRef]
  5. For some application examples, see D. Z. Anderson, C. Benkert, D. D. Crouch, “Competitive and cooperative multimode dynamics in photorefractive ring circuits,” in Neural Networks for Perception, Vol. 2, Computation, Learning, and Architectures, H. Wechsler, ed. (Academic, Boston, Mass., 1992), pp. 214–252.
  6. See, for example, J. H. Hong, T. Y. Chang, “Frequency-agile rf notch filter that uses photorefractive two-beam coupling,” Opt. Lett. 18, 164–166 (1993).
  7. See, for example, P. Mills, E. G. S. Paige, “Holographically formed, highly selective, infra-red filter in iron-doped lithium niobate,” Electron. Lett. 21, 885–886 (1985).
  8. M. Horowitz, D. Kligler, B. Fischer, “Time-dependent behavior of photorefractive two- and four-wave mixing,” J. Opt. Soc. Am. B 8, 2204–2217 (1991).
    [CrossRef]
  9. M. Horowitz, R. Daisy, B. Fischer, “Signal-to-pump ratio dependence of buildup and decay rates in photorefractive nonlinear two-beam coupling,” J. Opt. Soc. Am. B 9, 1685–1688 (1992).
    [CrossRef]
  10. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  11. N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
    [CrossRef]
  12. B. Ya Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRC Press, Boca Raton, Fla., 1995).
  13. S. MacCormack, J. Feinberg, “Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling,” Appl. Opt. 35, 5961–5963 (1996).
    [CrossRef] [PubMed]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.1.
  15. See Chap. 3.6 of Ref. 14.
  16. D. Z. Anderson, M. Saffman, A. Hermanns, “Manipulating the information carried by an optical beam with reflexive photorefractive beam coupling,” J. Opt. Soc. Am. B 12, 117–123 (1995).
    [CrossRef]
  17. A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B12, 1036–1047 (1995), Sect. 5.
  18. A. Zozulya, D. Z. Anderson, “Spatial structure of light and nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
    [CrossRef] [PubMed]

1996 (1)

1995 (2)

D. Z. Anderson, M. Saffman, A. Hermanns, “Manipulating the information carried by an optical beam with reflexive photorefractive beam coupling,” J. Opt. Soc. Am. B 12, 117–123 (1995).
[CrossRef]

A. Zozulya, D. Z. Anderson, “Spatial structure of light and nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

1991 (1)

1989 (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

1988 (1)

See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).

1985 (2)

See, for example, P. Mills, E. G. S. Paige, “Holographically formed, highly selective, infra-red filter in iron-doped lithium niobate,” Electron. Lett. 21, 885–886 (1985).

P. Yeh, “Theory of unidirectional photorefractive resonators,” J. Opt. Soc. Am. B 2, 1924–1928 (1985).
[CrossRef]

1982 (2)

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
[CrossRef] [PubMed]

1979 (1)

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, M. Saffman, A. Hermanns, “Manipulating the information carried by an optical beam with reflexive photorefractive beam coupling,” J. Opt. Soc. Am. B 12, 117–123 (1995).
[CrossRef]

A. Zozulya, D. Z. Anderson, “Spatial structure of light and nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
[CrossRef] [PubMed]

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B12, 1036–1047 (1995), Sect. 5.

For some application examples, see D. Z. Anderson, C. Benkert, D. D. Crouch, “Competitive and cooperative multimode dynamics in photorefractive ring circuits,” in Neural Networks for Perception, Vol. 2, Computation, Learning, and Architectures, H. Wechsler, ed. (Academic, Boston, Mass., 1992), pp. 214–252.

Benkert, C.

For some application examples, see D. Z. Anderson, C. Benkert, D. D. Crouch, “Competitive and cooperative multimode dynamics in photorefractive ring circuits,” in Neural Networks for Perception, Vol. 2, Computation, Learning, and Architectures, H. Wechsler, ed. (Academic, Boston, Mass., 1992), pp. 214–252.

Chang, T. Y.

See, for example, J. H. Hong, T. Y. Chang, “Frequency-agile rf notch filter that uses photorefractive two-beam coupling,” Opt. Lett. 18, 164–166 (1993).

See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).

Cronin-Golomb, M.

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Crouch, D. D.

For some application examples, see D. Z. Anderson, C. Benkert, D. D. Crouch, “Competitive and cooperative multimode dynamics in photorefractive ring circuits,” in Neural Networks for Perception, Vol. 2, Computation, Learning, and Architectures, H. Wechsler, ed. (Academic, Boston, Mass., 1992), pp. 214–252.

Daisy, R.

Ewbank, M. D.

See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).

Feinberg, J.

Fischer, B.

Hermanns, A.

Hong, J. H.

Horowitz, M.

Khuktarev, N. V.

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Kligler, D.

MacCormack, S.

Mamaev, A. V.

B. Ya Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRC Press, Boca Raton, Fla., 1995).

Markov, V. B.

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Mills, P.

See, for example, P. Mills, E. G. S. Paige, “Holographically formed, highly selective, infra-red filter in iron-doped lithium niobate,” Electron. Lett. 21, 885–886 (1985).

Odulov, S. G.

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Paige, E. G. S.

See, for example, P. Mills, E. G. S. Paige, “Holographically formed, highly selective, infra-red filter in iron-doped lithium niobate,” Electron. Lett. 21, 885–886 (1985).

Saffman, M.

D. Z. Anderson, M. Saffman, A. Hermanns, “Manipulating the information carried by an optical beam with reflexive photorefractive beam coupling,” J. Opt. Soc. Am. B 12, 117–123 (1995).
[CrossRef]

A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B12, 1036–1047 (1995), Sect. 5.

Shkunov, V. V.

B. Ya Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRC Press, Boca Raton, Fla., 1995).

Soskin, M. S.

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Vinetskii, V. L.

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

White, J. O.

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Yariv, A.

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Yeh, P.

See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).

P. Yeh, “Theory of unidirectional photorefractive resonators,” J. Opt. Soc. Am. B 2, 1924–1928 (1985).
[CrossRef]

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.1.

Zel’dovich, B. Ya

B. Ya Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRC Press, Boca Raton, Fla., 1995).

Zozulya, A.

A. Zozulya, D. Z. Anderson, “Spatial structure of light and nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
[CrossRef] [PubMed]

Zozulya, A. A.

A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B12, 1036–1047 (1995), Sect. 5.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. O. White, M. Cronin-Golomb, B. Fischer, A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Electron. Lett. (1)

See, for example, P. Mills, E. G. S. Paige, “Holographically formed, highly selective, infra-red filter in iron-doped lithium niobate,” Electron. Lett. 21, 885–886 (1985).

Ferroelectrics (1)

N. V. Khuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Opt. Soc. Am. B. (1)

See, for example, P. Yeh, T. Y. Chang, M. D. Ewbank, “Model for mutually pumped phase conjugation,” J. Opt. Soc. Am. B. 5, 1743–1749 (1988).

Opt. Lett. (2)

Phys. Rev. A (1)

A. Zozulya, D. Z. Anderson, “Spatial structure of light and nonlinear refractive index generated by fanning in photorefractive media,” Phys. Rev. A 52, 878–881 (1995).
[CrossRef] [PubMed]

Other (5)

B. Ya Zel’dovich, A. V. Mamaev, V. V. Shkunov, Speckle-Wave Interactions in Application to Holography and Nonlinear Optics (CRC Press, Boca Raton, Fla., 1995).

For some application examples, see D. Z. Anderson, C. Benkert, D. D. Crouch, “Competitive and cooperative multimode dynamics in photorefractive ring circuits,” in Neural Networks for Perception, Vol. 2, Computation, Learning, and Architectures, H. Wechsler, ed. (Academic, Boston, Mass., 1992), pp. 214–252.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 4.1.

See Chap. 3.6 of Ref. 14.

A. A. Zozulya, M. Saffman, D. Z. Anderson, “Stability analysis of two photorefractive ring resonator circuits: the flip-flop and the feature extractor,” J. Opt. Soc. Am. B12, 1036–1047 (1995), Sect. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two-beam coupling modular unit.

Fig. 2
Fig. 2

Top and side view of a unit. A BaTiO3 crystal is placed at the center of the unit over a small glass mount. Collets lie on platforms whose vertical tilt can be adjusted by two set screws. Dimensions are in millimeters.

Fig. 3
Fig. 3

Front and side view of a collet with (a) an aspheric lens (Geltech, 350150) and (b) a graded-index lens (NSG America, SLW 180-.29-550). The zirconia ferrule contains a polished multimode fiber with a 62.5-µm core and a 125-µm cladding diameter. In (a), distance d is adjusted to collimate the outgoing beam. All unspecified dimensions are in millimeters.

Fig. 4
Fig. 4

Top view of a Brewster-cut crystal.

Fig. 5
Fig. 5

Setup for the alignment of the input collets. We optimized the gain by adjusting the translation stages and the set screws shown in Fig. 2. The rotational stage is used during the alignment of the output collets.

Fig. 6
Fig. 6

Feature extractor processor in two different architectures: (a) simple ring and (b) ring with reflexive coupling.

Fig. 7
Fig. 7

Experimental setup for the feature extractor with reflexive coupling. We obtained the setup for the simple ring by simply bypassing the reflexive coupling. PBS, polarized beam splitter; AOMs, acousto-optic modulators.

Fig. 8
Fig. 8

Input and output intensity spectra for the feature extractor processor. The input spectrum is shown on the top of each screen with a ratio of 3.17:1 between the two input signals (linear scale); the output spectrum is shown at the bottom (decibel scale). (a) Ring with reflexive coupling and an output ratio of 45 dB; (b) simple ring with an output ratio of 38 dB; and (c) same as (a) except that the input signals are switched to check for asymmetries, and the output ratio is 43 dB. Note that reflexive coupling enhances the selectivity.

Tables (1)

Tables Icon

Table 1 Measured Gain for Each Unit with a Input Loss Beam/Gain Beam Intensity Ratio of 5000

Metrics