Abstract

We have improved the two-wave coupling amplification and the signal-to-noise ratio of an amplified signal with photorefractive cerium-doped potassium sodium strontium barium niobate (Ce:KNSBN) by employing optimum polarization orientation of the pump beam while the signal beam retains extraordinary polarization. The optimum polarization angle of the pump beam was found experimentally to be 30° with respect to the extraordinary polarization direction in a symmetrically incident system. Nearly 1.9-times enhancement of the gain and nearly 3-times enhancement of the signal-to-noise ratio were achieved at a signal-to-pump beam intensity ratio of 1:40. At a beam intensity ratio of 1:2000, a two-wave coupling gain of nearly 500 was obtained, which is much higher than the gain previously reported. Modified coupled-wave equations that involve beam fanning with certain assumptions concerning the fanning parameters were used. The numerical solution is in good agreement with the experimental data. The results are compared with those obtained with a 45°-cut BaTiO3 crystal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription