Abstract

We propose an optoelectronic parallel-matching architecture (PMA) that provides powerful processing capabilities in global processing compared with conventional parallel-computing architectures. The PMA is composed of a global processor called a parallel-matching (PM) module and multiple processing elements (PE’s). The PM module is implemented by a large-fan-out free-space optical interconnection and a PM smart-pixel array (PM-SPA). In the proposed architecture, by means of the PM module each PE can monitor the other PE’s by use of several kinds of global data matching as well as interprocessor communication. Theoretical evaluation of the performance shows that the proposed PMA provides tremendous improvement in global processing. A prototype demonstrator of the PM module is constructed on the basis of state-of-the-art optoelectronic devices and a diffractive optical element. The prototype is assumed for use in a multiple-processor system composed of 4 × 4 PE’s that are completely connected through bit-serial optical communication channels. The PM-SPA is emulated by a complex programmable device and a complementary metal-oxide semiconductor photodetector array. On the prototype demonstrator the fundamental operations of the PM module were verified at 15 MHz.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Almasi, A. Gottlieb, Highly Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1989).
  2. K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1985).
  3. T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1996).
    [CrossRef]
  4. J. H. Collet, D. Litaize, J. V. Campenhout, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, A. Louri, “Architectural approach to the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671–682 (2000).
    [CrossRef]
  5. O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.
  6. D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.
  7. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
    [CrossRef] [PubMed]
  8. A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).
  9. A. Louri, S. Furlonge, C. Neocleous, “Experimental demonstration of the optical multimesh hypercube: scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 35, 6909–6919 (1996).
    [CrossRef] [PubMed]
  10. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
    [CrossRef]
  11. P. Berthomé, A. Ferreira, Optical Interconnections and Parallel Processing: Trends at the Interface (Kluwer, London, 1998).
    [CrossRef]
  12. L. Chambers, Practical Handbook of Genetic Algorithms (CRC Press, Boca Raton, Fla., 1995).
    [CrossRef]
  13. D. J. Reiley, J. M. Sasian, “Optical design of a free-spacephotonic switching system,” Appl. Opt. 36, 4497–4504 (1997).
    [CrossRef] [PubMed]
  14. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997).
    [CrossRef]
  15. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992).
    [CrossRef] [PubMed]
  16. T. M. Pinkson, M. Raksapatcharawong, Y. Choi, “WARRP core: optoelectronic implementation of network-router deadlock-handling mechanisms,” Appl. Opt. 37, 276–283 (1998).
    [CrossRef]
  17. R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, New York, 1988).
  18. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).
  19. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  20. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990).
    [CrossRef]

2000 (1)

1999 (2)

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

1998 (1)

1997 (2)

1996 (3)

1992 (1)

1990 (1)

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Almasi, G. S.

G. S. Almasi, A. Gottlieb, Highly Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1989).

Ayliffe, M. H.

Baillie, D. A.

Benabes, P.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Berthomé, P.

P. Berthomé, A. Ferreira, Optical Interconnections and Parallel Processing: Trends at the Interface (Kluwer, London, 1998).
[CrossRef]

Boisset, G. C.

Boyd, A. R.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Briggs, F. A.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1985).

Buller, G. S.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Byrne, D.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Campenhout, J. V.

Chambers, L.

L. Chambers, Practical Handbook of Genetic Algorithms (CRC Press, Boca Raton, Fla., 1995).
[CrossRef]

Chandramani, P.

Choi, Y.

Christensen, M. P.

Coldren, L. A.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Collet, J. H.

Dändliker, R.

Desmulliez, M.

Desmulliez, M. P. Y.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Dines, J. A. B.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Eitel, S.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Ekman, J.

Fancey, S. J.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Ferreira, A.

P. Berthomé, A. Ferreira, Optical Interconnections and Parallel Processing: Trends at the Interface (Kluwer, London, 1998).
[CrossRef]

Forbes, M. G.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Furlonge, S.

Gale, M. T.

Gauggel, H.-P.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Gauthier, A.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Goetz, M.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Goodman, J.

Gottlieb, A.

G. S. Almasi, A. Gottlieb, Highly Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1989).

Gulden, K.-H.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Gutzwiller, J. L.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Haney, M. W.

Hegarty, J.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Hegblom, E. R.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Herzig, H. P.

Hibbs-Brenner, M.

Hinton, H. S.

Horan, P.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Hsiao, W.

Hwang, K.

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1985).

Jesshope, C.

Kabal, D.

Kiamilev, F.

Kim, N. H.

Ko, J.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Kurokawa, T.

Litaize, D.

Liu, Y.

Liu, Y. S.

Louderback, D. A.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Louri, A.

Matso, S.

Milojkovic, P.

Nakagawa, S.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Nakahara, T.

Neilson, D. T.

Neocleous, C.

Ohiso, Y.

Otazo, M. R.

Pavlasek, D.

Pennelli, G.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Pinkson, T. M.

Plant, D. V.

Prince, S. M.

Prongué, D.

Raksapatcharawong, M.

Reiley, D. J.

Robertson, B.

Robertson, W. M.

Rozier, R.

Sasian, J. M.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Sedgewick, R.

R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, New York, 1988).

Shang, A. Z.

Simmons, J.

Sjölund, O.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

Smith, W. J.

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

Song, K.

Stanley, C. R.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Taghizadeh, M. R.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Tateno, K.

Thienpont, H.

Thompson, D. A.

Tooley, F. A. P.

Tsuda, H.

Wakatsuki, A.

Walker, A. C.

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

Wyrowski, F.

Appl. Opt. (9)

T. Kurokawa, S. Matso, T. Nakahara, K. Tateno, Y. Ohiso, A. Wakatsuki, H. Tsuda, “Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems,” Appl. Opt. 37, 194–204 (1996).
[CrossRef]

J. H. Collet, D. Litaize, J. V. Campenhout, C. Jesshope, M. Desmulliez, H. Thienpont, J. Goodman, A. Louri, “Architectural approach to the role of optics in monoprocessor and multiprocessor machines,” Appl. Opt. 39, 671–682 (2000).
[CrossRef]

D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
[CrossRef] [PubMed]

A. Louri, S. Furlonge, C. Neocleous, “Experimental demonstration of the optical multimesh hypercube: scalable interconnection network for multiprocessors and multicomputers,” Appl. Opt. 35, 6909–6919 (1996).
[CrossRef] [PubMed]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

D. J. Reiley, J. M. Sasian, “Optical design of a free-spacephotonic switching system,” Appl. Opt. 36, 4497–4504 (1997).
[CrossRef] [PubMed]

D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997).
[CrossRef]

D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992).
[CrossRef] [PubMed]

T. M. Pinkson, M. Raksapatcharawong, Y. Choi, “WARRP core: optoelectronic implementation of network-router deadlock-handling mechanisms,” Appl. Opt. 37, 276–283 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. C. Walker, M. P. Y. Desmulliez, M. G. Forbes, S. J. Fancey, G. S. Buller, M. R. Taghizadeh, J. A. B. Dines, C. R. Stanley, G. Pennelli, A. R. Boyd, P. Horan, D. Byrne, J. Hegarty, S. Eitel, H.-P. Gauggel, K.-H. Gulden, A. Gauthier, P. Benabes, J. L. Gutzwiller, M. Goetz, “Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect,” IEEE J. Sel. Top. Quantum Electron. 5, 1–13 (1999).

J. Opt. Soc. Am. A (1)

Optik (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Other (8)

G. S. Almasi, A. Gottlieb, Highly Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1989).

K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1985).

O. Sjölund, D. A. Louderback, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Free-space optical interconnect using flip-chip bonded, microlensed arrays of monolithic vertical cavity lasers and resonant photodetectors,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 215–217.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, L. A. Coldren, “Vertical cavity lasers with large bandwidths at low currents for dense free-space optical interconnects,” in Digest of the Topical Meeting on Optics in Computing (Optical Society of America, Washington, D.C., 1999), pp. 224–226.

R. Sedgewick, Algorithms, 2nd ed. (Addison-Wesley, New York, 1988).

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990).

P. Berthomé, A. Ferreira, Optical Interconnections and Parallel Processing: Trends at the Interface (Kluwer, London, 1998).
[CrossRef]

L. Chambers, Practical Handbook of Genetic Algorithms (CRC Press, Boca Raton, Fla., 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Configurations of parallel-computing architectures: (a) a conventional master–slave architecture and (b) the PMA.

Fig. 2
Fig. 2

Reference datum and objective data in PM: d 1, d 2, and d 3 denote the output data of PE 1, PE 2, and PE 3, respectively.

Fig. 3
Fig. 3

Fundamental operations of the PM architecture. Mux, multiplexer.

Fig. 4
Fig. 4

Target prototype system of the PMA.

Fig. 5
Fig. 5

Schematic diagram of the optoelectronic PM procedure: (a) PE’s arranged on a two-dimensional grid, (b) the output data displayed on a light-emitter array, (c) the reference-duplication and the objective-duplication optical patterns, (d) the shuffled optical pattern, (e) the PM-SPA, (f) the optical output pattern of the PM results, and (g) the PE’s that receive the optical signals.

Fig. 6
Fig. 6

Structures of (a) a matching node and (b) an array of matching nodes for a PE.

Fig. 7
Fig. 7

Communication types: (a) single communication, (b) multiple communication, (c) single broadcast, and (d) multiple broadcast.

Fig. 8
Fig. 8

Schematic diagram of the data-ranking process for the PMA.

Fig. 9
Fig. 9

Schematic diagram of an optoelectronic complete-connection architecture: (a) the output data displayed on the VCSEL array, (b) the replica images of the VCSEL array for the complete-connection network composed of 4 × 4 PE’s, (c) a replica of the VCSEL image for PE1,4, and (d) the output data.

Fig. 10
Fig. 10

Timing charts of (a) the PM procedure and (b) the inter-PE communication. s i denotes the discrimination number of the data-source PE in the communication mode. CLK, clock signal; REF, reference datum; OBJ 0–10, objective data; OUT, output read out from the CPLD; RSTP, timing signal for resetting the PM result; RSTD, timing signal for reading out the PM result; w, word length; SEL, selection signal for determining the type of PM operation in the PM mode; OUT, signal for the PM results; MN, matching node.

Fig. 11
Fig. 11

(a) Designed optical interconnection pattern for a complete-connection network composed of 4 × 4 PE’s. (b) Part of the obtained CGH filter with two-level phase modulation. The pixel size is 8.5 µm, and the filter size is 17.408 µm. (c) Experimental results of the optical interconnection by the CGH filter.

Fig. 12
Fig. 12

Schematic diagram of the experimental prototype system: (a) configuration and (b) top view of the optical setup. BS, beam splitter.

Fig. 13
Fig. 13

Observed waveforms of (a) the optical signal emitted by the VCSEL for a rectangular input signal at 50 MHz and (b) the output of the CMOS-PD for the optical signal from the VCSEL at 15 MHz.

Fig. 14
Fig. 14

Experimental results of the PM operations and the inter-PE communication. Data separately measured by the logic analyzer are merged into a single figure.

Tables (6)

Tables Icon

Table 1 Elemental Operations of the PE and the Required Number of Steps per Operation

Tables Icon

Table 2 Throughputs of the Networks

Tables Icon

Table 3 Processing Costs for the Fundamental Matching Operations

Tables Icon

Table 4 Order of the Operation Time Required for Fundamental Global Processing

Tables Icon

Table 5 Approximated Values of the Communication Ratios of Large N

Tables Icon

Table 6 Devices Used in the Prototype

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Costjob; s=wsαjob,
T=jobCostjob; s.
αm.commmesh=wrN,

Metrics