Abstract

A new, to our knowledge, modulator based on a tapered single-mode optical fiber is introduced. The electro-optic device consists of a tapered optical fiber placed on a resonator made of a piezoelectric material. An electrical signal applied to the piezoelectric material makes the taper bend, and that displacement produces a modulation in the intensity of the optical signal traveling through the fiber. This device is very easy to build and is low in cost. Because of its nature, this new device might be very useful in optical fiber sensors. Its performance is analyzed, and the results are discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Boucouvalas, G. Georgiou, “External refractive index response of tapered coaxial couplers,” Opt. Lett. 11, 252–259 (1986).
  2. P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).
  3. P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
    [CrossRef]
  4. O. Lumholt, A. Bjarklev, S. Dahl-Petersen, C. C. Larsen, J. H. Povlsen, T. Rasmussen, K. Rottwitt, “Simple fiber-optic low-temperature sensor that uses microbending losses,” Opt. Lett. 16, 1355–1357 (1991).
    [CrossRef] [PubMed]
  5. K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
    [CrossRef]
  6. F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
    [CrossRef]
  7. C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
    [CrossRef]
  8. C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
    [CrossRef]
  9. T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
    [CrossRef]
  10. F. Gonthier, X. Daxhelet, S. Lacroix, “High isolation tapered fiber filters,” in Proceedings of the Twenty-first European Conference on Optical Communication ECOC’95 (Independent Micro-electronics Center, Leuven, Belgium, 1995), pp. 801–804.
  11. F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
    [CrossRef]
  12. K. T. V. Gratten, B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer, London, 1999), Vol. 3, pp. 206–210.
  13. Y. N. Ning, B. C. B. Chu, D. A. Jackson, “Interrogation of a conventional current transformer by a fiber-optic interferometer,” Opt. Lett. 16, 1448–1450 (1991).
    [CrossRef] [PubMed]
  14. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  15. D. T. Cassidy, D. C. Johnson, K. O. Hill, “Wavelength-dependent transmission of single-mode optical fiber tapers,” Appl. Opt. 24, 945–950 (1985).
    [CrossRef]
  16. F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
    [CrossRef]
  17. J. M. Senior, Optical Fiber Communications. Principles and Practice, 2nd ed. (Prentice-Hall, Hertfordshire, UK, 1992), pp. 40–58.
  18. L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
    [CrossRef]
  19. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
    [CrossRef]
  20. R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
    [CrossRef]
  21. R. J. Black, R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. Optoelectron. 133, 277–384 (1986).
  22. P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
    [CrossRef]

2000

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

1996

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

1994

T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
[CrossRef]

1992

K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
[CrossRef]

1991

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

Y. N. Ning, B. C. B. Chu, D. A. Jackson, “Interrogation of a conventional current transformer by a fiber-optic interferometer,” Opt. Lett. 16, 1448–1450 (1991).
[CrossRef] [PubMed]

O. Lumholt, A. Bjarklev, S. Dahl-Petersen, C. C. Larsen, J. H. Povlsen, T. Rasmussen, K. Rottwitt, “Simple fiber-optic low-temperature sensor that uses microbending losses,” Opt. Lett. 16, 1355–1357 (1991).
[CrossRef] [PubMed]

1990

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

1989

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

1987

P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).

1986

A. C. Boucouvalas, G. Georgiou, “External refractive index response of tapered coaxial couplers,” Opt. Lett. 11, 252–259 (1986).

R. J. Black, R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. Optoelectron. 133, 277–384 (1986).

1985

Aramburu, C.

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Arregui, F. J.

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
[CrossRef]

Bakas, A.

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Bariáin, C.

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
[CrossRef]

F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
[CrossRef]

Birks, T. A.

T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
[CrossRef]

Bjarklev, A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

R. J. Black, R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. Optoelectron. 133, 277–384 (1986).

Bobb, L. C.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Boucouvalas, A. C.

A. C. Boucouvalas, G. Georgiou, “External refractive index response of tapered coaxial couplers,” Opt. Lett. 11, 252–259 (1986).

Bourbonnais, R.

R. J. Black, R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. Optoelectron. 133, 277–384 (1986).

Bures, J.

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

Cassidy, D. T.

Chu, B. C. B.

Dahl-Petersen, S.

Data, P.

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Daxhelet, X.

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, “High isolation tapered fiber filters,” in Proceedings of the Twenty-first European Conference on Optical Communication ECOC’95 (Independent Micro-electronics Center, Leuven, Belgium, 1995), pp. 801–804.

Fogg, B. R.

K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
[CrossRef]

Georgiou, G.

A. C. Boucouvalas, G. Georgiou, “External refractive index response of tapered coaxial couplers,” Opt. Lett. 11, 252–259 (1986).

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, “High isolation tapered fiber filters,” in Proceedings of the Twenty-first European Conference on Optical Communication ECOC’95 (Independent Micro-electronics Center, Leuven, Belgium, 1995), pp. 801–804.

Gratten, K. T. V.

K. T. V. Gratten, B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer, London, 1999), Vol. 3, pp. 206–210.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

Hill, K. O.

Jackson, D. A.

Johnson, D. C.

Kaczmarski, P.

P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).

Krumboltz, H. D.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, “High isolation tapered fiber filters,” in Proceedings of the Twenty-first European Conference on Optical Communication ECOC’95 (Independent Micro-electronics Center, Leuven, Belgium, 1995), pp. 801–804.

Lagasse, P.

P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).

Larsen, C. C.

López-Amo, M.

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Lumholt, O.

Matías, I. R.

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
[CrossRef]

F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
[CrossRef]

Meggitt, B. T.

K. T. V. Gratten, B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer, London, 1999), Vol. 3, pp. 206–210.

Murphy, K. A.

K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
[CrossRef]

Ning, Y. N.

Otón, J. M.

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Pannell, C. N.

T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
[CrossRef]

Povlsen, J. H.

Rasmussen, T.

Rottwitt, K.

Russell, P. J.

T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
[CrossRef]

Senior, J. M.

J. M. Senior, Optical Fiber Communications. Principles and Practice, 2nd ed. (Prentice-Hall, Hertfordshire, UK, 1992), pp. 40–58.

Shankar, P. M.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

Vandewege, J.

P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).

Vengsarkar, A. M.

K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Gonthier, X. Daxhelet, S. Lacroix, R. J. Black, J. Bures, “Broadband all-fiber filters for wavelength division multiplexing applications,” Appl. Phys. Lett. 54, 1290–1292 (1989).
[CrossRef]

IEE Proc.

P. Kaczmarski, P. Lagasse, J. Vandewege, “Propagation-beam model for a single-mode-fibre fused coupler,” IEE Proc. 134, 111–116 (1987).

IEE Proc. Optoelectron.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabatic criteria,” IEE Proc. Optoelectron. 138, 343–353 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. Optoelectron. 138, 355–364 (1991).
[CrossRef]

R. J. Black, R. Bourbonnais, “Core-mode cutoff for finite-cladding lightguides,” IEE Proc. Optoelectron. 133, 277–384 (1986).

IEEE Photon. Technol. Lett.

T. A. Birks, P. J. Russell, C. N. Pannell, “Low power acousto-optic device based on a tapered single-mode fiber,” IEEE Photon. Technol. Lett. 6, 725–727 (1994).
[CrossRef]

J. Lightwave Technol.

K. A. Murphy, B. R. Fogg, A. M. Vengsarkar, “Spatially weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol. 10, 1680–1686 (1992).
[CrossRef]

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Microwave Opt. Technol. Lett.

P. Data, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Opt. Eng.

C. Bariáin, F. J. Arregui, I. R. Matías, M. López-Amo, “Tapered optical fiber based pressure sensor,” Opt. Eng. 39, 2241–2247 (2000).
[CrossRef]

Opt. Lett.

Sens. Actuators A

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based in a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

Other

J. M. Senior, Optical Fiber Communications. Principles and Practice, 2nd ed. (Prentice-Hall, Hertfordshire, UK, 1992), pp. 40–58.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

K. T. V. Gratten, B. T. Meggitt, Optical Fiber Sensor Technology (Kluwer, London, 1999), Vol. 3, pp. 206–210.

F. J. Arregui, I. R. Matías, C. Bariáin, M. López-Amo, “Experimental design rules for implementing biconically tapered single-mode optical fibre displacement sensors,” in European Workshop on Optical Fibre Sensors, B. Culshaw, J. D. Jones, eds., Proc. SPIE3483, 164–168 (1998).
[CrossRef]

C. Bariáin, I. R. Matías, F. J. Arregui, M. López-Amo, “Experimental results towards development of humidity sensors by using a hygroscopic material on biconically tapered optical fibre,” in Optical and Fiber Optic Sensor Systems, S. Huang, K. D. Bennett, D. A. Jackson, eds., Proc. SPIE3555, 95–105 (1998).
[CrossRef]

F. Gonthier, X. Daxhelet, S. Lacroix, “High isolation tapered fiber filters,” in Proceedings of the Twenty-first European Conference on Optical Communication ECOC’95 (Independent Micro-electronics Center, Leuven, Belgium, 1995), pp. 801–804.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Tapered single-mode fiber.

Fig. 2
Fig. 2

Experimental setup for characterizing the bending of tapers at different wavelengths.

Fig. 3
Fig. 3

Output optical power plotted as a function of the bending angle α for two wavelengths: 1.5 and 1.3 µm. The waist diameter of the taper was 25 µm. The measurements were obtained with the experimental setup shown in Fig. 2.

Fig. 4
Fig. 4

Conductance of the ceramic used as a piezoelectric element in the OAM plotted as a function of the frequency from 0–300 kHz. The vertical axis has arbitrary relative units.

Fig. 5
Fig. 5

Experimental setup for probing the time (amplitude modulator) and the frequency (mixing) behaviors of the OAM. FC, fiber connect.

Fig. 6
Fig. 6

Signal acquired with the digital oscilloscope by means of the setup shown in Fig. 5. The cw optical signal at 1550 nm was modulated extrinsically by the OAM at a frequency of 26 kHz. The upper trace (channel 1) shows the resultant output optical signal obtained with the oscilloscope through the electro-optic converter. The lower trace is the square signal that was applied to the piezoelectric material to modulate the optical signal. Here and in Figs. 7 10, the following definitions apply: TekStop indicates that the screen of the Tektronix oscilloscope has been stopped to sample the data. MS/s denotes megasamples per second. Acqs denotes acquisitions; thus 1088 Acqs means that 1088 points are shown on the screen. Δ indicates the difference in x-axis units between user-designated markers on the oscilloscope screen. The @ sign denotes the position of the continuous line marker. M on the horizontal coordinate indicates the measurement horizontal scale. The symbol ∫ on the horizontal coordinate indicates the positive edge trigger.

Fig. 7
Fig. 7

Signal acquired with the digital oscilloscope by means of the setup shown in Fig. 5. The cw optical signal at 1550 nm was extrinsically modulated by the OAM at a frequency of 39 kHz with a square signal. The upper trace (channel 1) shows the resultant output optical signal detected by the oscilloscope through the electro-optic converter. The lower trace is the square signal applied to the piezoelectric material to modulate the optical signal.

Fig. 8
Fig. 8

(a) Electrical spectrum from 0 to 500 kHz that corresponds to the optical signal generated in the amplitude-modulated source. A sinusoidal signal at 300 kHz that corresponds to the electrical signal modulating the intensity of the laser source and introduced through its analog input can be seen. (b) Electrical spectrum from 0 to 500 kHz that corresponds to the signal of (a) when modulated by the OAM with a sinusoidal signal at 26 kHz by use of the experimental setup shown in Fig. 5 for mixing. In this case, the areas labeled “a” represent the carrier spectrum, those labeled “b” represent the modulating-signal spectrum introduced by the OAM, and those labeled “c” represent the sidebands. The symbol M↓ on the left-hand vertical coordinate indicates that the level zero is below the screen. Math2 indicates the fast Fourier transform of channel 2.

Fig. 9
Fig. 9

Electrical spectrum from 0 to 1250 kHz that corresponds to a signal at the digital oscilloscope and is composed of a carrier at 900 kHz that is modulated by the OAM with a sinusoidal signal at 228 kHz by use of the experimental setup shown in Fig. 5. Here the areas labeled “a” represent the carrier spectrum, the areas labeled “b” represent the modulating-signal spectrum introduced by the OAM, and the areas labeled “c” represent the sidebands.

Fig. 10
Fig. 10

(a) Electrical spectrum from 0 to 1250 kHz that corresponds to the optical signal generated in the modulated source. A square signal at 250 kHz can be seen; it corresponds to the modulating signal that was introduced through the analog input of the laser source. (b) Electrical spectrum from 0 to 1250 kHz that corresponds to the signal of (a) when modulated by the OAM with a sinusoidal signal at 26 kHz by use of the experimental setup shown in Fig. 5, i.e., the mixed-signal result. Here the areas labeled “a” represent the carrier spectrum, the areas labeled “b” represent the modulating-signal spectra introduced by the OAM, and the areas labeled “c” represent the sidebands.

Tables (1)

Tables Icon

Table 1 Summary of the Modal Coupling in Zone II of the Taper as a Function of the Bending Angle α

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Vcore=2πλ ρcorencore2-nclad21/2,

Metrics