Abstract

A new technique for transmitting information through multimode fiber-optic cables is presented. This technique sends parallel channels through the fiber-optic cable, thereby greatly improving the data transmission rate compared with that of the current technology, which uses serial data transmission through single-mode fiber. An artificial neural network is employed to decipher the transmitted information from the received speckle pattern. Several different preprocessing algorithms are developed, tested, and evaluated. These algorithms employ average region intensity, distributed individual pixel intensity, and maximum mean-square-difference optimal group selection methods. The effect of modal dispersion on the data rate is analyzed. An increased data transmission rate by a factor of 37 over that of single-mode fibers is realized. When implementing our technique, we can increase the channel capacity of a typical multimode fiber by a factor of 6.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 36, 1463–1472 (1966).
    [CrossRef]
  2. P. Naulleau, M. Brown, C. Chen, E. Leith, “Direct three-dimensional image transmission through single-mode fibers with monochromatic light,” Opt. Lett. 21, 36–38 (1996).
    [CrossRef] [PubMed]
  3. P. Naulleau, C. Chen, E. Leith, “Analysis of direct three-dimensional transmission through optical fibers by the use of coherence methods,” Appl. Opt. 35, 3953–3962 (1996).
    [CrossRef] [PubMed]
  4. P. Naulleau, D. Dilworth, “Motion-resolved imaging of moving objects embedded within scattering media by the use of time-gated speckle analysis,” Appl. Opt. 35, 5251–5257 (1996).
    [CrossRef] [PubMed]
  5. A. Gover, C. P. Lee, A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am. 66, 306–311 (1976).
    [CrossRef]
  6. G. J. Dunning, R. C. Lind, “Demonstration of image transmission through fibers by optical phase conjugation,” Opt. Lett. 7, 558–560 (1982).
    [CrossRef] [PubMed]
  7. B. Fischer, S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46, 113–114 (1985).
    [CrossRef]
  8. U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
    [CrossRef]
  9. J.-Y. Son, V. I. Bobrinev, H.-W. Jeon, Y.-H. Cho, Y.-S. Eom, “Direct image transmission through a multimode optical fiber,” Appl. Opt. 35, 273–277 (1996).
    [CrossRef] [PubMed]
  10. P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 35, 597–602 (1994).
    [CrossRef]
  11. J. P. Powers, An Introduction to Fiber Optic Systems, (Aken Associates, Boston, Mass., 1993).
  12. S. Haykin, Neural Networks, a Comprehensive Foundation, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1999).
  13. J. M. Zurada, Introduction to Artificial Neural Systems (West, St. Paul, Minn., 1992).

1996

1994

P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 35, 597–602 (1994).
[CrossRef]

1985

B. Fischer, S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46, 113–114 (1985).
[CrossRef]

1982

1979

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

1976

1966

W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 36, 1463–1472 (1966).
[CrossRef]

Bobrinev, V. I.

Brown, M.

Chen, C.

Cho, Y.-H.

Dilworth, D.

Dunning, G. J.

Eom, Y.-S.

Fischer, B.

B. Fischer, S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46, 113–114 (1985).
[CrossRef]

Friesem, A. A.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Gover, A.

Haykin, S.

S. Haykin, Neural Networks, a Comprehensive Foundation, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1999).

Jeon, H.-W.

Lee, C. P.

Leith, E.

Leith, E. N.

P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 35, 597–602 (1994).
[CrossRef]

Levy, U.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Lind, R. C.

Lukosz, W.

W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 36, 1463–1472 (1966).
[CrossRef]

Naulleau, P.

Powers, J. P.

J. P. Powers, An Introduction to Fiber Optic Systems, (Aken Associates, Boston, Mass., 1993).

Son, J.-Y.

Sternklar, S.

B. Fischer, S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46, 113–114 (1985).
[CrossRef]

Sun, P. C.

P. C. Sun, E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 35, 597–602 (1994).
[CrossRef]

Yariv, A.

Zurada, J. M.

J. M. Zurada, Introduction to Artificial Neural Systems (West, St. Paul, Minn., 1992).

Appl. Opt.

Appl. Phys. Lett.

B. Fischer, S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46, 113–114 (1985).
[CrossRef]

J. Opt. Soc. Am.

A. Gover, C. P. Lee, A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am. 66, 306–311 (1976).
[CrossRef]

W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 36, 1463–1472 (1966).
[CrossRef]

Opt. Commun.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Opt. Lett.

Other

J. P. Powers, An Introduction to Fiber Optic Systems, (Aken Associates, Boston, Mass., 1993).

S. Haykin, Neural Networks, a Comprehensive Foundation, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1999).

J. M. Zurada, Introduction to Artificial Neural Systems (West, St. Paul, Minn., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Neural network structure.

Fig. 3
Fig. 3

Four-quadrant image test set.

Fig. 4
Fig. 4

Two typical input images with their corresponding speckle patterns.

Fig. 5
Fig. 5

Two typical characters with their corresponding speckle patterns.

Fig. 6
Fig. 6

Plot of computation time and bit arrival time versus number of modes.

Tables (3)

Tables Icon

Table 1 Neural Network Pattern Recognition by Use of the Average Region Intensity Coding

Tables Icon

Table 2 Neural Network Pattern Recognition by Use of the Intensity of the First Pixel in Each Region for Coding

Tables Icon

Table 3 Neural Network Pattern Recognition by Use of a Group of Pixels

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

NmV22,
V2ΠrλNA,
Δτ=Ln1-n2c1-πV,
DRmax=14Δτ2.
DRmax=0.25Ln1-n2c1-π2N.
xj=fi=1N Wijxi,  1jM.
yk=fj=1M Wjkxj,  1kL.
Wijt+1=Wijt+ηδjxi,
Wjkt+1=Wjkt+ηxjyk1-ykdk-yk,
MSDm=n=1NSj=1NRi=1NCxmi, j-xni, j2NSNRNC,
p=3MN+L.
FLOP per single pass=64Nm4Nm+Nm=120Nm2.
1/Nm bps=120Nm2Δt,
Nm=1/120 bps Δt1/3,

Metrics