## Abstract

A new technique for transmitting information through multimode
fiber-optic cables is presented. This technique sends parallel
channels through the fiber-optic cable, thereby greatly improving the
data transmission rate compared with that of the current technology,
which uses serial data transmission through single-mode fiber. An
artificial neural network is employed to decipher the transmitted
information from the received speckle pattern. Several different
preprocessing algorithms are developed, tested, and
evaluated. These algorithms employ average region intensity,
distributed individual pixel intensity, and maximum
mean-square-difference optimal group selection methods. The effect
of modal dispersion on the data rate is analyzed. An increased data
transmission rate by a factor of 37 over that of single-mode fibers is
realized. When implementing our technique, we can increase the
channel capacity of a typical multimode fiber by a factor of
6.

© 2001 Optical Society of America

Full Article |

PDF Article
### Equations (14)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${N}_{m}\approx \frac{{V}^{2}}{2},$$
(2)
$$V\approx \frac{2\mathrm{\Pi}r}{\mathrm{\lambda}}\left(\mathrm{NA}\right),$$
(3)
$$\mathrm{\Delta}\mathrm{\tau}=\frac{L\left({n}_{1}-{n}_{2}\right)}{c}\left(1-\frac{\mathrm{\pi}}{V}\right),$$
(4)
$${\mathrm{DR}}_{max}=\frac{1}{4\mathrm{\Delta}{\mathrm{\tau}}^{2}}.$$
(5)
$${\mathrm{DR}}_{max}=\frac{0.25}{\left[\frac{L\left({n}_{1}-{n}_{2}\right)}{c}\left(1-\frac{\mathrm{\pi}}{\sqrt{2N}}\right)\right]}.$$
(6)
$${x}_{j}\prime =f\left(\sum _{i=1}^{N}{W}_{\mathit{ij}}{x}_{i}\right),1\le j\le M.$$
(7)
$${y}_{k}=f\left(\sum _{j=1}^{M}{W}_{\mathit{jk}}\prime {x}_{j}\prime \right),1\le k\le L.$$
(8)
$${W}_{\mathit{ij}}\left(t+1\right)={W}_{\mathit{ij}}\left(t\right)+\mathrm{\eta}{\mathrm{\delta}}_{j}{x}_{i},$$
(9)
$${W}_{\mathit{jk}}\prime \left(t+1\right)={W}_{\mathit{jk}}\prime \left(t\right)+\mathrm{\eta}{x}_{j}\prime {y}_{k}\left(1-{y}_{k}\right)\left({d}_{k}-{y}_{k}\right),$$
(10)
$${\mathrm{MSD}}_{m}=\frac{{\displaystyle \sum _{n=1}^{{N}_{S}}}{\displaystyle \sum _{j=1}^{{N}_{R}}}{\displaystyle \sum _{i=1}^{{N}_{C}}}{\left[{x}_{m}\left(i,j\right)-{x}_{n}\left(i,j\right)\right]}^{2}}{\left({N}_{S}\right)\left({N}_{R}\right)\left({N}_{C}\right)},$$
(11)
$$p=3M\left(N+L\right).$$
(12)
$$\mathrm{FLOP}\mathrm{per}\mathrm{single}\mathrm{pass}=6\left(4{N}_{m}\right)\left(4{N}_{m}+{N}_{m}\right)=120N_{m}{}^{2}.$$
(13)
$$1/{N}_{m}\mathrm{bps}=120N_{m}{}^{2}\mathrm{\Delta}t,$$
(14)
$${N}_{m}=1/{\left(120\mathrm{bps}\mathrm{\Delta}t\right)}^{1/3},$$