J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Physics 114, 185–200 (1994).

[CrossRef]

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

D. W. Prather, M. S. Mirotznik, S. Shi, “Electromagnetic models for finite aperiodic diffractive optical elements,” in Mathematical Modeling in Optical Science, SIAM Frontier Book Series (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1999).

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

D. W. Prather, M. S. Mirotznik, S. Shi, “Electromagnetic models for finite aperiodic diffractive optical elements,” in Mathematical Modeling in Optical Science, SIAM Frontier Book Series (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1999).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

D. W. Prather, M. S. Mirotznik, S. Shi, “Electromagnetic models for finite aperiodic diffractive optical elements,” in Mathematical Modeling in Optical Science, SIAM Frontier Book Series (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1999).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

G. J. Swanson, “Binary optics technoloy: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).

G. J. Swanson, “Binary optics technoloy: the theory and design of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

G. J. Swanson, W. B. Veldkamp, “High-efficiency, multilevel diffractive optical elements,” U.S. patent4,895,790 (23January1990).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

G. J. Swanson, W. B. Veldkamp, “High-efficiency, multilevel diffractive optical elements,” U.S. patent4,895,790 (23January1990).

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Physics 114, 185–200 (1994).

[CrossRef]

N. Sergienko, J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. Friberg, “Comparison of electromagnetic and scalar methods for evaluation of diffractive lenses,” J. Mod. Opt. 46, 65–82 (1999).

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

G. J. Swanson, “Binary optics technoloy: the theory and design of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

G. J. Swanson, W. B. Veldkamp, “High-efficiency, multilevel diffractive optical elements,” U.S. patent4,895,790 (23January1990).

G. J. Swanson, “Binary optics technoloy: theoretical limits on the diffraction efficiency of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

D. W. Prather, M. S. Mirotznik, S. Shi, “Electromagnetic models for finite aperiodic diffractive optical elements,” in Mathematical Modeling in Optical Science, SIAM Frontier Book Series (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1999).