Abstract

A total of 364 optical source–detector pairs were deployed uniformly over a 9 cm × 9 cm probe area initially, and then the total pairs were reduced gradually to 60 in experimental and simulation studies. For each source–detector configuration, three-dimensional (3-D) images of a 1-cm-diameter absorber of different contrasts were reconstructed from the measurements made with a frequency-domain system. The results have shown that more than 160 source–detector pairs are needed to reconstruct the absorption coefficient to within 60% of the true value and appropriate spatial and contrast resolution. However, the error in target depth estimated from 3-D images was more than 1 cm in all source–detector configurations. With the a priori target depth information provided by ultrasound, the accuracy of the reconstructed absorption coefficient was improved by 15% and 30% on average, and the beam width was improved by 24% and 41% on average for high- and low-contrast cases, respectively. The speed of reconstruction was improved by ten times on average.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  2. S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
    [CrossRef]
  3. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  4. T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  6. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  7. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
    [CrossRef]
  8. R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
  9. H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).
  10. W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).
  11. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).
  12. X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
    [CrossRef] [PubMed]
  13. C. Matson, H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
    [CrossRef]
  14. C. Matson, H. Liu, “Backpropagation in turbid media,” J. Opt. Soc. Am. A 16, 1254–1265 (1999).
    [CrossRef]
  15. Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
    [CrossRef]
  16. Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
    [CrossRef]
  17. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).
  18. M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).
  19. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  20. W. Zhu, Y. Wang, J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639–2650 (1998).
    [CrossRef]
  21. P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
    [CrossRef] [PubMed]
  22. G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).
  23. D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.
  24. P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

2000

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

1999

1998

1997

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

1996

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
[CrossRef]

1995

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

1994

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

1993

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

1973

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Anderson, E. R.

Arjun, A. G.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Barbour, R.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Brenner, M.

Butler, J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Chance, B.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Chen, Y.

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).

Coquoz, O.

Cowan, C. M.

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Dambro, T.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Deng, Y.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

Ding, X.-H.

D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.

Dunrana, T.

Durduran, T.

Ebbini, E. S.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, K. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Fikiet, J.

P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

Fishkin, J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Fishkin, J. B.

Flax, W.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

Franceschini, M.

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gerety, E.

Golub, G. H.

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Grable, R. J.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Guo, P.

P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.

Holboke, M.

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jholboke, M.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Jiang, H.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

Kaschke, M.

Kashke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kidney, D.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Kla, S.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Li, P. C.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

Li, X.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1997).
[CrossRef] [PubMed]

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Liu, H.

Matson, C.

McBride, T.

Moesta, K.

Moesta, K. T.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Nioka, Q.

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Ntziachristos, V.

O’Donnell, M.

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

Osterberg, U.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
[CrossRef]

Pattanayak, D. N.

Patterson, M.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

Paulsen, K.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

Pfaff, L.

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Piao, D.

D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.

P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

Pogue, B.

T. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. Osterberg, B. Pogue, K. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 12, 253–266 (1995).

Pogue, B. W.

Poplack, S.

Rohler, D. P.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Schlag, P.

Schlag, P. M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
[CrossRef]

Shah, N.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

Sullivan, D.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Tromberg, B. J.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
[CrossRef]

Walker, S.

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

W. Zhu, Y. Wang, J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639–2650 (1998).
[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

Yao, Y.

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

Yodh, A.

Yodh, A. G.

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Zhang, J.

Zhou, S.

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

Zhu, Q.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).

Q. Zhu, T. Dunrana, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near-infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.

Zhu, W.

W. Zhu, Y. Wang, J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography,” J. Opt. Soc. Am. A 15, 2639–2650 (1998).
[CrossRef]

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

Appl. Opt.

IEEE Trans. Med. Imaging

W. Zhu, Y. Wang, Y. Deng, Y. Yao, R. Barbour, “A wavelet-based multiresolution regularized least squares reconstruction approach for optical tomography,” IEEE Trans. Med. Imaging 16(2), 210–217 (1997).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

P. C. Li, W. Flax, E. S. Ebbini, M. O’Donnell, “Blocked element compensation in phased array imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 283–292 (1993).
[CrossRef] [PubMed]

J. Biomed. Opt.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5(2), 229–236 (2000).

M. Jholboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimentional diffuse optical mammography with ultrasound localization in human subject,” J. Biomed. Opt. 5(2), 237–247 (2000).

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–355 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Photochem. Photobiol.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Arjun, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

SIAM (Soc. Ind. Appl. Math.) Rev.

G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM (Soc. Ind. Appl. Math.) Rev. 15, 318–334 (1973).

Other

D. Piao, X.-H. Ding, P. Guo, Q. Zhu “Optimal distribution of near infrared sensors for simultaneous ultrasound and NIR imaging,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 472–474.

P. Guo, Q. Zhu, D. Piao, J. Fikiet, “Combined ultrasound and NIR imager,” in Biomedical Topical Meetings, Postconference Digest, Vol. 38 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 97–99.

R. J. Grable, D. P. Rohler, S. Kla, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

S. Zhou, Y. Chen, Q. Nioka, X. Li, L. Pfaff, C. M. Cowan, B. Chance, “Portable dual-wavelength amplitude cancellation image system for the determination of human breast tumor,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. Alfano, B. Tromberg, eds., Proc. SPIE3597, 571–579 (1999).
[CrossRef]

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Target, source, and detector configurations for a semi-infinite medium.

Fig. 2
Fig. 2

Configuration of a dense array with 28 optical sources and 13 detectors as well as six ultrasound transducers. Large black circles are optical detectors, gray circles are optical sources, and small white circles are ultrasound transducers. A 1-cm-diameter spherical target was located at various depths in simulations and experiments.

Fig. 3
Fig. 3

Schematic of a single-channel optical data-acquisition system. A 140.02-MHz oscillator is used to drive the laser diode (780 nm) that delivers the light to the medium through the fiber. The detected signals are amplified and mixed with signals from a 140-MHz oscillator. The heterodyned 20-kHz signals are amplified, filtered, and digitized. The signals from two oscillators are also directly mixed to provide reference signals. The amplitude and phase of the waveform received through the medium are calculated from signals measured through the medium and the reference. PMT, photomultiplier tube.

Fig. 4
Fig. 4

Calibration curves. (a) log [ρ2 U(ρ)] versus source-detector separation. (b) Phase versus source–detector separation.

Fig. 5
Fig. 5

Ultrasound data-acquisition system. The pulser is used to generate high-voltage pulses that are used to excite the selected ultrasound transducer. The returned signals are received by the selected transducer and are sampled by the A/D converter.

Fig. 6
Fig. 6

Experimental 3-D images of μ̂ a reconstructed with a total of 28 × 13 = 364 source–detector pairs at 2437 iterations. The target (μ a = 0.25 cm-1) was located at (x = 0, y = 0, z = 3.0 cm) inside the Intralipid background. (a) Reconstructed μ̂ a at target layer 3. The horizontal axes represent spatial x and y coordinates in centimeters, and the vertical axis is the μ̂ a . The measured maximum value of the image lobe [μ̂ a(max)] was 0.233 cm-1, and its location was (x = 0.5, y = 0.0). No image artifacts were observed. (b) -6-dB contour plot of (a). The outer contour is -6 dB from the μ̂ a(max), and the contour spacing is 1 dB. The measured -6-dB beam width was 1.27 cm. (c) Reconstructed μ̂ a at nontarget layer 4. An image lobe of strength 0.138 cm-1 and spatial location of (x = 0.0, y = 0.0) was observed.

Fig. 7
Fig. 7

Simulated 3-D images of μ̂ a reconstructed with a total of 28 × 13 = 364 source–detector pairs. The target (μ a = 0.25 cm-1) was located at (x = 0, y = 0, z = 3.0 cm) inside the Intralipid background. (a) Reconstructed μ̂ a at nontarget layer 2 (simulation, 0.5% noise). No image lobe was observed. (b) Reconstructed μ̂ a at target layer 3 (simulation, 0.5% noise). The target of strength μ̂ a(max) = 0.248 cm-1 and the spatial location (0.0, 0.0) was observed. (c) Reconstructed μ̂ a at nontarget layer 4 (simulation, 0.5% noise). The target of strength 0.190 cm-1 and location (x = 0.0, y = 0.0) was observed. (d). Reconstructed μ̂ a at nontarget layer 2 with 1.0% noise. The target of 0.028 cm-1 was observed. Note that the scale of (d) is different from (a)–(c).

Fig. 8
Fig. 8

(a) Ultrasound pulse-echo signals or A-scan lines obtained from six transducers. The abscissa is the propagation depth in millimeters. From reflected signals, the measured depth of the target front surface is 2.44 cm, and the back surface is 3.43 cm. The center of the target is ∼3 cm. The total length of the signal corresponds to 1.2 cm in depth, and the measured distance between the front and the back surfaces is 0.993 cm. The spatial dimension covered by the transducers is 2.4 cm. (b) An image of the high-contrast target reconstructed at a target layer when we used only a priori target depth information provided by ultrasound. The reconstructed μ̂ a(max) reached 0.245 cm-1 at 216 iterations.

Fig. 9
Fig. 9

Experimental images at target layer 3 reconstructed with a total of 16 × 5 = 80 source–detector pairs. (a) Reconstructed μ̂ a at target layer 3 with 2478 iterations. The measured μ̂ a(max) was 0.107 cm-1, which was 43% of the true value, and the spatial location of μ̂ a(max) was (x = 0.5, y = -0.5). The measured peak image artifact level was -10 dB below the peak of the main image lobe. (b) -12-dB contour plot of (a). The outer contour is -12 dB, and the contour spacing is 2 dB. The measured -6-dB beam width was 2.55 cm, which was 200% broader than that of the dense array. (c) Reconstructed μ̂ a at target layer 3 with 10,000 iterations. The measured μ̂ a(max) reached 0.264 cm-1, and the peak artifact level was increased by 2 dB as well. (d) Reconstructed μ̂ a at the target layer with only a priori target depth information provided by ultrasound. μ̂ a(max) = 0.173 cm-1 at 216 iterations.

Fig. 10
Fig. 10

μ̂ a(max) versus the total number of source–detector pairs. The center of the target (μ a = 0.25 cm-1) was located at (x = 0.0, y = 0.0, z = 3.0 cm) in computer simulations and experiments. (a) Curves were obtained at the target layer. Two dashed curves (upper and lower) are the curve-fitting results of simulation data points obtained with 0.5% and 2.0% noise added to the forward data, respectively. The experimental data are plotted with circles, and the dashed curve in the middle is the fitting result of the experimental points. (b) The measured target strength (circles) and the curve-fitting result (lower curve). The measured target strength (stars) was reconstructed at the target layer only by use of a priori depth information and the curve fitting result (upper curve).

Fig. 11
Fig. 11

Experimental images of μ̂ a reconstructed from a total of 28 × 13 = 364 source–detector pairs. The target (μ a = 0.10 cm-1) was located at (x = 0, y = 0, z = 2.5 cm) inside the Intralipid background. (a) Reconstructed μ̂ a at target layer 3. The measured μ̂ a(max) was 0.063 cm-1 at 510 iterations, and its location was (x = 0.0, y = -0.5). Edge artifacts were observed and the peak level was -7 dB from the μ̂ a(max). (b) Reconstructed μ̂ a at nontarget layer 4. The measured μ̂ a(max) was 0.0871 cm-1 at 510 iterations, and its location was (x = 0, y = 0). (c) Reconstructed μ̂ a at the target layer when only the target depth information provided by ultrasound was used. μ̂ a(max) = 0.107 cm-1 at 56 iterations.

Fig. 12
Fig. 12

Experimental images of μ̂ a at target layer 3 reconstructed from a total of 24 × 5 = 120 source–detector pairs. (a) Reconstructed μ̂ a at target layer 3 with 510 iterations. The measured μ̂ a(max) was 0.049 cm-1, which was 49% of the true target μ a , and its location was (x = 0.5, y = -1.0), which was displaced from the true target location by 1.11 cm. Image artifacts were observed, and the peak was -3 dB from the μ̂ a(max). (b) -6-dB contour plot of (a). (c) Reconstructed μ̂ a at target layer 3 with 1500 iterations. The peak artifact was 5 dB higher than the image lobe. (d) Reconstructed μ̂ a at target layer 3 (56 iterations) with only a priori target depth information provided by ultrasound. The measured μ̂ a(max) was 0.074 cm-1, and its location was (x = 0.5, y = -0.5). Image artifacts were observed, and the peak was -5 dB from the μ̂ a(max).

Fig. 13
Fig. 13

Low-contrast target case. (a) Reconstructed μ̂ a(max) versus total source–detector pairs with the target depth available (stars) and the curve-fitting results (upper curve). Reconstructed μ̂ a(max) versus total source–detector pairs measured at target layer (circles) and the curve-fitting results (lower curve) and (b) at deeper nontarget layer 4.

Tables (2)

Tables Icon

Table 1 Imaging Parameters Measured with Different Array Configurations: High-Contrast Target Case (μ a = 0.25 cm -1 )

Tables Icon

Table 2 Imaging Parameters Measured with Different Array Configurations: Lower-Contrast Target Case (μ a = 0.10 cm -1 )

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Uscr,ω=l,mAl,mjlkoutr+jnlkoutrYl,mθ,ϕ,
Al,m=-jvSkout/Douthl1koutrsYl,m*θs,ϕs×Doutxjlyjlx-DinyjlyjlxDoutxhl1xjly-Dinyhl1xjly,
Uscr,ω=l,mAl,m+jlkoutr++jnlkoutr+Yl,mθ+,ϕ+- l,mAl,m-jlkoutr++jnlkoutr+Yl,mθ+,ϕ++l,mAl,m+jlkoutr-+jnlkoutr-Yl,mθ-, ϕ-- l,mAl,m-jlkoutr-+jnlkoutr-Yl,mθ-,ϕ-,
Al,m+=-jvSKout/Douthl1koutrs+Yl,m*θs+,ϕs+×[Doutxjlyjlx-DinyjlyjlxDoutxhl1xjly-Dinyhl1xjly,
Al,m-=-jvSkout/Douthl1koutrs-Yl,m*θs-,ϕs-×Doutxjlyjlx-DinyjlyjlxDoutxhl1xjly-Dinyhl1xjly.
Uincr,ω=S4πDoutexpjkout|r-rs+||r-rs+|-expjkout|r-rs-||r-rs-|.
Ur,ω=Uincr,ω+Uscr,ω.
Uscrd,rs,ω=Grν,rd,ωUincrν,rs,ω×νΔμarν/D¯drν3,
Uscrdi,rsi,ω=jNGrvj,rdi,ωUincrvj,rsi,ω×νΔμarvj/D¯Δrν3.
WMXNΔμaNX1=UsdMX1.
min Usd-WX2X2+1,
vGrν,rd,ωUincrν,rs,ων/D¯drν3,
E+σ=jN nj2+jN2nj41/2,
g=-2Usd-WΔμaTWΔμaT Δμa+1--2Usc-WΔμaTUsd-WΔμaΔμaΔμaT Δμa+12
g-2NTWΔμaTΔμa+1--2NTNΔμaΔμaTΔμa+12,

Metrics