Abstract

A 32-channel time-resolved imaging device for medical optical tomography has been employed to evaluate a scheme for imaging the human female breast. The fully automated instrument and the reconstruction procedure have been tested on a conical phantom with tissue-equivalent optical properties. The imaging protocol has been designed to obviate compression of the breast and the need for coupling fluids. Images are generated from experimental data with an iterative reconstruction algorithm that employs a three-dimensional (3D) finite-element diffusion-based forward model. Embedded regions with twice the background optical properties are revealed in separate 3D absorption and scattering images of the phantom. The implications for 3D time-resolved optical tomography of the breast are discussed.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).
  2. B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
    [PubMed]
  3. M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.
  4. S. B. Colak, D. G. Papaioannou, G. W. ‘t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).
  5. R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).
  6. P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).
  7. S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
    [CrossRef] [PubMed]
  8. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997), http://www.opticsexpress.org .
    [CrossRef]
  9. M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [CrossRef]
  11. D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  12. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  13. W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).
  14. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
    [CrossRef] [PubMed]
  15. U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
    [CrossRef] [PubMed]
  16. R. Model, M. Orlt, M. Walzel, R. Hünlich, “Optical imaging: three-dimensional approximation and perturbation approaches for time-domain data,” Appl. Opt. 37, 7968–7976 (1998).
    [CrossRef]
  17. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
    [CrossRef]
  18. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
    [CrossRef]
  19. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  20. M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
    [CrossRef]
  22. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
    [CrossRef] [PubMed]
  23. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
    [CrossRef] [PubMed]
  24. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).
  25. H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .
  26. D. S. Holder, “Design and electrical characteristics of an electrode array for electrical impedance tomography of the female breast,” Innov. Tech. Biol. Med. 16, 144–150 (1995).
  27. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  28. H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
    [CrossRef] [PubMed]
  29. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  30. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
    [CrossRef] [PubMed]
  31. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  32. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
    [CrossRef] [PubMed]
  33. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  34. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  35. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  36. V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .
  37. D. A. Boas, T. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001), http://www.opticsexpress.org .
  38. J. Schoeberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ (2000).
  39. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  40. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
    [CrossRef] [PubMed]
  41. E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

2001 (2)

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001), http://www.opticsexpress.org .

2000 (8)

H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

1999 (5)

1998 (5)

R. Model, M. Orlt, M. Walzel, R. Hünlich, “Optical imaging: three-dimensional approximation and perturbation approaches for time-domain data,” Appl. Opt. 37, 7968–7976 (1998).
[CrossRef]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

1997 (5)

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

S. B. Colak, D. G. Papaioannou, G. W. ‘t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997).

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997), http://www.opticsexpress.org .
[CrossRef]

1996 (3)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

1995 (3)

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

D. S. Holder, “Design and electrical characteristics of an electrode array for electrical impedance tomography of the female breast,” Innov. Tech. Biol. Med. 16, 144–150 (1995).

1991 (1)

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

1990 (2)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

1987 (1)

B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
[PubMed]

‘t Hooft, G. W.

Alfano, R. R.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

D. A. Boas, T. Gaudette, S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography,” Opt. Express 8, 263–270 (2001), http://www.opticsexpress.org .

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Baba, K.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Boas, D. A.

Butler, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cai, W.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Colak, S. B.

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Das, B. B.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Davies, E. R.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Destouet, J. M.

B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
[PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fantini, S.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Franceschini, M.-A.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Freyer, R.

U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

Fry, M. E.

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

Gaida, G.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

Gaudette, T.

Gonzalez-Barbosa, F. M.

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Grable, R. J.

R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Gratton, E.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Grosenick, D.

Hampel, U.

U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

He, P.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Holder, D. S.

D. S. Holder, “Design and electrical characteristics of an electrode array for electrical impedance tomography of the female breast,” Innov. Tech. Biol. Med. 16, 144–150 (1995).

Hünlich, R.

Iftimia, N.

Jackson, P. C.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Jess, H.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000), http://www.opticsexpress.org .

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Kaltenbach, J.

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

Kaneko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Kaschke, M.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

Key, H.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Lax, M.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Liu, F.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Ma, X.

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Mantulin, W. W.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McBride, T.

Melissen, J. B. M.

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Model, R.

Moesta, K. T.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Moesta, T.

Monsees, B.

B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
[PubMed]

Nioka, S.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Orel, S.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Orlt, M.

Osterberg, U.

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Paasschens, J. C. J.

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Papaioannou, D. G.

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Paulsen, K.

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Pogue, B. W.

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Rinneberg, H. H.

Rohler, D. P.

R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Sastry, K. L. A.

R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

Schlag, P. M.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

Schoeberl, J.

J. Schoeberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ (2000).

Schomberg, H.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Seeber, M.

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Shah, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Shnall, M.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Solin, L.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Takai, M.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Testorf, M.

Totty, W. G.

B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
[PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

van Asten, N.

van der Mark, M. B.

Wabnitz, H.

Walzel, M.

Wells, P. N. T.

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

Wrobel, W.

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Xie, C.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Xu, Y.

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Yodh, A. G.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express 5, 230–242 (1999), http://www.opticsexpress.org .

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

Yung, Y.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Zeng, F. A.

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

Zhao, S.

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

S. Nioka, Y. Yung, M. Shnall, S. Zhao, S. Orel, C. Xie, B. Chance, L. Solin, “Optical imaging of breast tumor by means of continuous waves,” Adv. Exp. Med. Biol. 411, 227–232 (1997).
[CrossRef] [PubMed]

Appl. Opt. (4)

Brit. J. Radiol. (1)

J. C. Hebden, D. T. Delpy, “Diagnostic imaging with light,” Brit. J. Radiol. 70, 206–214 (1997).

Innov. Tech. Biol. Med. (1)

D. S. Holder, “Design and electrical characteristics of an electrode array for electrical impedance tomography of the female breast,” Innov. Tech. Biol. Med. 16, 144–150 (1995).

Int. J. Imaging Syst. Technol. (1)

S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000).

Inverse Problems (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (5)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1, 330–334 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Med. Phys. (2)

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

U. Hampel, R. Freyer, “Fast reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Photochem. Photobiol. (1)

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (6)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

H. Key, E. R. Davies, P. C. Jackson, P. N. T. Wells, “Optical characteristics of breast tissues at visible and near-infared wavelengths,” Phys. Med. Biol. 36, 579–590 (1991).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

M.-A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Radiation Med. (1)

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis,” Radiation Med. 8, 1–5 (1990).

Radiology (1)

B. Monsees, J. M. Destouet, W. G. Totty, “Light scanning versus mammography in breast cancer detection,” Radiology 163, 463–465 (1987).
[PubMed]

Rev. Sci. Instrum. (3)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

V. Ntziachristos, X. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Other (6)

M. Schweiger, S. R. Arridge, “A system for solving the forward and inverse problems in optical spectroscopy and imaging,” in Advances in Optical Imaging and Photon Migration, Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 263–268.

J. Schoeberl, “NETGEN—an automatic 3D tetrahedral mesh generator,” http://www.sfb013.uni-linz.ac.at/∼joachim/netgen/ (2000).

W. Cai, B. B. Das, F. Liu, F. A. Zeng, M. Lax, R. R. Alfano, “Three dimensional image reconstruction in highly scattering turbid media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–244 (1997).

M. Kaschke, H. Jess, G. Gaida, J. Kaltenbach, W. Wrobel, “Transillumination imaging of tissue by phase modulation techniques,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 88–92.

R. J. Grable, D. P. Rohler, K. L. A. Sastry, “Optical tomography breast imaging,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 197–210 (1997).

E. M. C. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, F. M. Gonzalez-Barbosa, D. T. Delpy, “Development of 3D in-vivo time-resolved optical tomography using simulations of complex structures,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics