Abstract

Temperature feedback control during laser-assisted tissue coagulation was investigated and demonstrated with the egg-white model. We observed the dynamics of photothermal denaturation during CO2 laser irradiation by simultaneously controlling surface temperature and monitoring He–Ne laser transmission of egg-white samples. Once a quasi-constant surface temperature was established, transmission of egg white tended to decrease linearly with time. Analysis of experimental data strongly suggested a first-order rate process. Since transmission was primarily affected by heat-induced increase in the scattering coefficient and depth of coagulation, we speculated that changes in transmission were reliable indicators of accumulating photothermal damage. Our experiments demonstrated that thermal feedback can effectively control or limit photothermal damage.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Çilesiz, “Controlled temperature photothermal tissue welding,” J. Biomed. Opt. 4, 327–336 (1999).
    [CrossRef]
  2. T. Halldórsson, J. Langerholc, L. Senatori, H. Funk, “Thermal action of laser irradiation in biological material monitored by egg-white coagulation,” Appl. Opt. 20, 822–825 (1981).
    [CrossRef] [PubMed]
  3. Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
    [CrossRef] [PubMed]
  4. Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
    [CrossRef] [PubMed]
  5. J. W. Pickering, “Optical property changes as a result of protein denature in albumen and yolk,” J. Photochem. Photobiol. 16, 101–111 (1992).
    [CrossRef]
  6. M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
    [CrossRef]
  7. T. Asshauer, G. Delacrétaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
    [CrossRef]
  8. A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
    [CrossRef]
  9. A. R. Moritz, F. C. Henriques, “Studies in thermal injury II: the relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol. 23, 695–720 (1947).
    [PubMed]
  10. J. A. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 561–606.
    [CrossRef]
  11. T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
    [CrossRef] [PubMed]
  12. O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
    [CrossRef]
  13. O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
    [CrossRef]
  14. N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
    [CrossRef]
  15. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  16. I. F. Çilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of human aorta,” Appl. Opt. 32, 477–487 (1993).
    [CrossRef]
  17. F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
    [CrossRef] [PubMed]
  18. M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
    [CrossRef]
  19. W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior of ocular tissue during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
    [CrossRef] [PubMed]
  20. W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
    [CrossRef] [PubMed]
  21. W.-C. Lin, J. P. Wicksted, A. J. Welch, M. Motamedi, “Thermally induced refractive nonlinearity in scattering media,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 76–83 (1997).
    [CrossRef]

1999 (1)

I. Çilesiz, “Controlled temperature photothermal tissue welding,” J. Biomed. Opt. 4, 327–336 (1999).
[CrossRef]

1998 (1)

N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
[CrossRef]

1996 (2)

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

1993 (2)

I. F. Çilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef]

F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
[CrossRef] [PubMed]

1992 (2)

J. W. Pickering, “Optical property changes as a result of protein denature in albumen and yolk,” J. Photochem. Photobiol. 16, 101–111 (1992).
[CrossRef]

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

1991 (1)

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

1990 (1)

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

1981 (1)

1947 (1)

A. R. Moritz, F. C. Henriques, “Studies in thermal injury II: the relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol. 23, 695–720 (1947).
[PubMed]

Asshauer, T.

T. Asshauer, G. Delacrétaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

Bolin, F. P.

Chambettaz, F.

F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
[CrossRef] [PubMed]

Chen, S. S.

N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
[CrossRef]

Cheong, W.-F.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

Çilesiz, I.

I. Çilesiz, “Controlled temperature photothermal tissue welding,” J. Biomed. Opt. 4, 327–336 (1999).
[CrossRef]

Çilesiz, I. F.

Delacrétaz, G.

T. Asshauer, G. Delacrétaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

Eyal, O.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Ference, R. J.

Funk, H.

Gardner, C. M.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Ghaffari, S. A.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

Gilo, M.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Glenn, T. M.

T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
[CrossRef] [PubMed]

Goldwasser, B.

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Halldórsson, T.

Henriques, F. C.

A. R. Moritz, F. C. Henriques, “Studies in thermal injury II: the relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol. 23, 695–720 (1947).
[PubMed]

Humphrey, J. D.

N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
[CrossRef]

Jacques, S. L.

T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
[CrossRef] [PubMed]

Jerath, M. R.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Katzir, A.

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Langerholc, J.

Lin, W.-C.

Markow, M. S.

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

Marquis-Weible, F.

F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
[CrossRef] [PubMed]

Moritz, A. R.

A. R. Moritz, F. C. Henriques, “Studies in thermal injury II: the relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol. 23, 695–720 (1947).
[PubMed]

Motamedi, M.

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior of ocular tissue during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
[CrossRef] [PubMed]

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

W.-C. Lin, J. P. Wicksted, A. J. Welch, M. Motamedi, “Thermally induced refractive nonlinearity in scattering media,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 76–83 (1997).
[CrossRef]

Ophir, E.

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Pearce, J. A.

J. A. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 561–606.
[CrossRef]

Pickering, J. W.

J. W. Pickering, “Optical property changes as a result of protein denature in albumen and yolk,” J. Photochem. Photobiol. 16, 101–111 (1992).
[CrossRef]

Preuss, L. E.

Rastegar, S.

T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
[CrossRef] [PubMed]

T. Asshauer, G. Delacrétaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

Rylander, H. G.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

Salathé, R. P.

F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
[CrossRef] [PubMed]

Senatori, L.

Shenfeld, O.

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Star, W.

A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
[CrossRef]

Tan, O. T.

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

Taylor, R. C.

Thomsen, S.

J. A. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 561–606.
[CrossRef]

van Gemert, M. J. C.

A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
[CrossRef]

Weinberg, W. S.

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

Welch, A. J.

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

W.-C. Lin, M. Motamedi, A. J. Welch, “Nonlinear optical behavior of ocular tissue during laser irradiation,” Appl. Opt. 34, 7979–7985 (1995).
[CrossRef] [PubMed]

I. F. Çilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef]

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

W.-C. Lin, J. P. Wicksted, A. J. Welch, M. Motamedi, “Thermally induced refractive nonlinearity in scattering media,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 76–83 (1997).
[CrossRef]

A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
[CrossRef]

Wicksted, J. P.

W.-C. Lin, J. P. Wicksted, A. J. Welch, M. Motamedi, “Thermally induced refractive nonlinearity in scattering media,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 76–83 (1997).
[CrossRef]

Wilson, B. C.

A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
[CrossRef]

Wright, N. T.

N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
[CrossRef]

Yang, Y.

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

Zur, A.

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Am. J. Pathol. (1)

A. R. Moritz, F. C. Henriques, “Studies in thermal injury II: the relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol. 23, 695–720 (1947).
[PubMed]

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

M. Motamedi, A. J. Welch, W.-F. Cheong, S. A. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 34, 693–696 (1988).
[CrossRef]

IEEE Trans. Biomed. Eng. (3)

F. Chambettaz, F. Marquis-Weible, R. P. Salathé, “Temperature dependence of reflectance and transmittance of the artery exposed to air during laser irradiation,” IEEE Trans. Biomed. Eng. 40, 105–107 (1993).
[CrossRef] [PubMed]

T. M. Glenn, S. Rastegar, S. L. Jacques, “Finite element analysis of temperature controlled coagulation of laser irradiated tissue,” IEEE Trans. Biomed. Eng. 43, 79–87 (1996).
[CrossRef] [PubMed]

Y. Yang, M. S. Markow, H. G. Rylander, W. S. Weinberg, A. J. Welch, “Reflectance as an indirect measurement of the extent of laser-induced coagulation,” IEEE Trans. Biomed. Eng. 37, 466–473 (1990).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

I. Çilesiz, “Controlled temperature photothermal tissue welding,” J. Biomed. Opt. 4, 327–336 (1999).
[CrossRef]

J. Photochem. Photobiol. (2)

J. W. Pickering, “Optical property changes as a result of protein denature in albumen and yolk,” J. Photochem. Photobiol. 16, 101–111 (1992).
[CrossRef]

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Lasers Surg. Med. (2)

Y. Yang, A. J. Welch, H. G. Rylander, “Rate process parameters of albumen,” Lasers Surg. Med. 11, 188–190 (1991).
[CrossRef] [PubMed]

O. Shenfeld, E. Ophir, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Opt. Eng. (1)

O. Eyal, A. Zur, O. Shenfeld, M. Gilo, A. Katzir, “Infrared radiometry using silver halide fibers and a cooled photonic detector,” Opt. Eng. 33, 502–509 (1994).
[CrossRef]

Trans. ASME J. Biomech. Eng. (1)

N. T. Wright, S. S. Chen, J. D. Humphrey, “Time-temperature equivalence of heat-induced changes in cells and proteins,” Trans. ASME J. Biomech. Eng. 120, 22–26 (1998).
[CrossRef]

Other (4)

J. A. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 561–606.
[CrossRef]

T. Asshauer, G. Delacrétaz, S. Rastegar, “Photothermal denaturation of egg white by pulsed holmium laser,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 120–124 (1996).
[CrossRef]

A. J. Welch, M. J. C. van Gemert, W. Star, B. C. Wilson, “Definitions and overview of tissue optics,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 15–46.
[CrossRef]

W.-C. Lin, J. P. Wicksted, A. J. Welch, M. Motamedi, “Thermally induced refractive nonlinearity in scattering media,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2975, 76–83 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified diagram of experimental setup (modified from Ref. 1).

Fig. 2
Fig. 2

Detailed diagram showing experimental geometry.

Fig. 3
Fig. 3

Graphic representation of laser exposure time as a function of FCT and percentage change in normalized transmission at different ALPs: (a) 500 mW, (b) 750 mW, (c) 1.0 W, (d) 1.25 W, (e) 1.5 W.

Fig. 4
Fig. 4

Experimental data taken at 500 mW showing noisy nature of transmission data and postirradiation transmission increase.

Fig. 5
Fig. 5

Experimental data taken at 750 mW showing postirradiation transmission increase.

Fig. 6
Fig. 6

Experimental data taken at 1.25 W demonstrating spasms in the profile of He–Ne laser beam during TF-controlled laser irradiation.

Fig. 7
Fig. 7

Arrhenius plots for (a) 50%, (b) 30%, and (c) 20% decrease in normalized transmission of egg white coagulated by TF-controlled CO2 laser irradiation.

Fig. 8
Fig. 8

Graphic representation of the decrease in normalized transmission as a function of the characteristic laser exposure time t 50 at all FCTs and ALPs.

Tables (1)

Tables Icon

Table 1 Laser Exposure Time Tabulated as a Function of FCT and Percentage Decrease in Normalized Transmission at Different ALPs

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Tnativet=exp-μt-natived-dcoagulatedt,
Tnativet=exp-μa-natived-dcoagulatedt.
Tcoagulatedt=exp-μt-coagulateddcoagulatedt,
Ttotalt=exp-μa-natived-dcoagulatedt×exp-μt-coagulatedtdcoagulatedt.
Ttotalt=exp-μa-natived×exp-μs-coagulateddcoagulatedt,
Tnormalizedt=TtotaltTnativet0=exp-μs-coagulateddcoagulatedt,
ΩTt=A  exp-EΩRTtdt,

Metrics