Abstract

A modification of phase-shifting interferometry is proposed for microsurface profiling of flat surfaces under vibrating conditions. With this technique the required phase shift, achieved by quarter-wave plates and polarizers, is free of errors associated with motion. A nearly common optical-path configuration is achieved, and the effect of environment is reduced. The effect of environment on the optical system is also studied. Moreover, the measurement of phase is instantaneous, which increases the versatility of this technique to measure vibrating objects. Experiments were carried out on a smooth mirror surface excited with high-frequency vibrations, and the technique was found to be immune to vibrations of both high and low frequency.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bharath, J. C. Wyant, C. Koliopoulos, “Measurement topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
    [CrossRef]
  2. K. Kinnstaetter, A. W. Lohmann, J. Schwider, N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988).
    [CrossRef] [PubMed]
  3. J. Schwider, T. Dresel, B. Manzke, “Some considerations of reduction of reference phase error in phase-stepping interferometry,” Appl. Opt. 38, 655–659 (1999).
    [CrossRef]
  4. K. Hibino, B. F. Oreb, D. I. Farrant, K. G. Larkin, “Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts,” J. Opt. Soc. Am. A 14, 918–930 (1997).
    [CrossRef]
  5. T. Shouhong, “Self calibrating algorithm for phase shifting inteferometry,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2860, 91–98 (1996).
    [CrossRef]
  6. R. Onodera, Y. Ishii, “Phase-extraction analysis of laser-diode phase-shifting interferometry that is insensitive to changes in laser power,” J. Opt. Soc. Am. A 13, 139–146 (1996).
    [CrossRef]
  7. D. Malacara, S. Manuel, Z. Malacra, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).
  8. R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–365 (1984).
  9. C. L. Koliopoulos, “Phase shifting techniques applied to unique applications,” in Laser Interferometry VIII: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2861, 86–93 (1996).
    [CrossRef]
  10. C. L. Koliopoulos, “Simultaneous phase shift interferometer,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 119–127 (1991).
    [CrossRef]
  11. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59–61 (1984).
    [CrossRef] [PubMed]

1999 (1)

1997 (1)

1996 (1)

1988 (1)

1985 (1)

1984 (2)

R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–365 (1984).

O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59–61 (1984).
[CrossRef] [PubMed]

Bharath, B.

Dresel, T.

Farrant, D. I.

Hibino, K.

Ishii, Y.

Kinnstaetter, K.

Koliopoulos, C.

Koliopoulos, C. L.

C. L. Koliopoulos, “Phase shifting techniques applied to unique applications,” in Laser Interferometry VIII: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2861, 86–93 (1996).
[CrossRef]

C. L. Koliopoulos, “Simultaneous phase shift interferometer,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 119–127 (1991).
[CrossRef]

Kwon, O. Y.

Larkin, K. G.

Lohmann, A. W.

Malacara, D.

D. Malacara, S. Manuel, Z. Malacra, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).

Malacra, Z.

D. Malacara, S. Manuel, Z. Malacra, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).

Manuel, S.

D. Malacara, S. Manuel, Z. Malacra, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).

Manzke, B.

Moore, R.

R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–365 (1984).

Onodera, R.

Oreb, B. F.

Schwider, J.

Shouhong, T.

T. Shouhong, “Self calibrating algorithm for phase shifting inteferometry,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2860, 91–98 (1996).
[CrossRef]

Smythe, R.

R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–365 (1984).

Streibl, N.

Wyant, J. C.

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–365 (1984).

Opt. Lett. (1)

Other (4)

C. L. Koliopoulos, “Phase shifting techniques applied to unique applications,” in Laser Interferometry VIII: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2861, 86–93 (1996).
[CrossRef]

C. L. Koliopoulos, “Simultaneous phase shift interferometer,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 119–127 (1991).
[CrossRef]

D. Malacara, S. Manuel, Z. Malacra, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998).

T. Shouhong, “Self calibrating algorithm for phase shifting inteferometry,” in Laser Interferometry VIII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewicz, M. Takeda, eds., Proc. SPIE2860, 91–98 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic of Mirau-based phase-shifting interferometer. La, laser; Sf, spatial filter; Mi, Mirau objective; Ob, measurement object; Bs, 50% beam splitter; Le, lens of f focal length; C, camera; M, mirror; QWP, quarter-wave plate; P, polarizer; V, vibration at different frequencies and fixed amplitude.

Fig. 2
Fig. 2

Effect of environment on the phase-shifting interferometer.

Fig. 3
Fig. 3

Surface roughness versus capture time while object is vibrating at 200 Hz.

Fig. 4
Fig. 4

Surface roughness versus capture time while object is vibrating at 500 Hz.

Tables (1)

Tables Icon

Table 1 Angle of Polarizers and Quarter-Wave Plates Used to Achieve Incremental Phase Shift of 90°

Metrics