Abstract

An integrating-sphere system has been designed and constructed for multiple optical properties measurement in the IR spectral range. In particular, for specular samples, the absolute transmittance and reflectance can be measured directly with high accuracy and the absorptance can be obtained from these by simple calculation. These properties are measured with a Fourier transform spectrophotometer for several samples of both opaque and transmitting materials. The expanded uncertainties of the measurements are shown to be less than 0.003 (absolute) over most of the detector-limited working spectral range of 2 to 18 µm. The sphere is manipulated by means of two rotation stages that enable the ports on the sphere to be rearranged in any orientation relative to the input beam. Although the sphere system is used for infrared spectral measurements, the measurement method, design principles, and features are generally applicable to other wavelengths as well.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sheffer, U. P. Oppenheim, A. D. Devir, “Absolute reflectometer in the mid-infrared region,” Appl. Opt. 29, 129–132 (1990).
    [CrossRef] [PubMed]
  2. “Absolute methods for reflection measurement,” (CIE, Vienna, 1979).
  3. J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. II.
  4. K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
    [CrossRef]
  5. T. M. Wang, K. L. Eckerle, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (U.S. Government Printing Office, Washington, D.C., 1990).
  6. F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coatings, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
    [CrossRef]
  7. D. B. Chenault, K. A. Snail, L. M. Hanssen, “Improved integrating-sphere throughput with a lens and nonimaging concentrator,” Appl. Opt. 34, 7959–7964 (1995).
    [CrossRef] [PubMed]
  8. L. M. Hanssen, S. G. Kaplan, “Infrared diffuse reflectance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 289–302 (1999).
    [CrossRef]
  9. S. G. Kaplan, L. M. Hanssen, “Infrared regular reflectance and transmittance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 303–310 (1999).
    [CrossRef]
  10. J. R. Birch, F. J. J. Clarke, “Fifty sources of error in Fourier transform spectroscopy,” Spectrosc. Eur. 7, 16–22 (1995).
  11. S. Kaplan, R. U. Datla, L. M. Hanssen, “Testing the radiometric accuracy of Fourier transform transmittance measurements,” Appl. Opt. 36, 8896–8908 (1997).
    [CrossRef]
  12. E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  13. P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).
  14. L. M. Hanssen, S. G. Kaplan, “Problems posed by scattering transmissive materials for accurate transmittance and reflectance measurements,” in Optical Diagnostic Methods for Inorganic Transmissive Materials, R. U. Datla, L. M. Hanssen, eds., Proc. SPIE3425, 28–36 (1998).
    [CrossRef]

1999 (2)

L. M. Hanssen, S. G. Kaplan, “Infrared diffuse reflectance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 289–302 (1999).
[CrossRef]

S. G. Kaplan, L. M. Hanssen, “Infrared regular reflectance and transmittance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 303–310 (1999).
[CrossRef]

1997 (1)

1995 (2)

J. R. Birch, F. J. J. Clarke, “Fifty sources of error in Fourier transform spectroscopy,” Spectrosc. Eur. 7, 16–22 (1995).

D. B. Chenault, K. A. Snail, L. M. Hanssen, “Improved integrating-sphere throughput with a lens and nonimaging concentrator,” Appl. Opt. 34, 7959–7964 (1995).
[CrossRef] [PubMed]

1990 (1)

Birch, J. R.

J. R. Birch, F. J. J. Clarke, “Fifty sources of error in Fourier transform spectroscopy,” Spectrosc. Eur. 7, 16–22 (1995).

Chenault, D. B.

Clarke, F. J. J.

J. R. Birch, F. J. J. Clarke, “Fifty sources of error in Fourier transform spectroscopy,” Spectrosc. Eur. 7, 16–22 (1995).

F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coatings, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
[CrossRef]

Datla, R. U.

Devir, A. D.

Eckerle, K. L.

T. M. Wang, K. L. Eckerle, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (U.S. Government Printing Office, Washington, D.C., 1990).

Hanssen, L. M.

L. M. Hanssen, S. G. Kaplan, “Infrared diffuse reflectance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 289–302 (1999).
[CrossRef]

S. G. Kaplan, L. M. Hanssen, “Infrared regular reflectance and transmittance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 303–310 (1999).
[CrossRef]

S. Kaplan, R. U. Datla, L. M. Hanssen, “Testing the radiometric accuracy of Fourier transform transmittance measurements,” Appl. Opt. 36, 8896–8908 (1997).
[CrossRef]

D. B. Chenault, K. A. Snail, L. M. Hanssen, “Improved integrating-sphere throughput with a lens and nonimaging concentrator,” Appl. Opt. 34, 7959–7964 (1995).
[CrossRef] [PubMed]

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

L. M. Hanssen, S. G. Kaplan, “Problems posed by scattering transmissive materials for accurate transmittance and reflectance measurements,” in Optical Diagnostic Methods for Inorganic Transmissive Materials, R. U. Datla, L. M. Hanssen, eds., Proc. SPIE3425, 28–36 (1998).
[CrossRef]

Hsia, J. J.

T. M. Wang, K. L. Eckerle, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (U.S. Government Printing Office, Washington, D.C., 1990).

Kaplan, S.

Kaplan, S. G.

L. M. Hanssen, S. G. Kaplan, “Infrared diffuse reflectance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 289–302 (1999).
[CrossRef]

S. G. Kaplan, L. M. Hanssen, “Infrared regular reflectance and transmittance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 303–310 (1999).
[CrossRef]

L. M. Hanssen, S. G. Kaplan, “Problems posed by scattering transmissive materials for accurate transmittance and reflectance measurements,” in Optical Diagnostic Methods for Inorganic Transmissive Materials, R. U. Datla, L. M. Hanssen, eds., Proc. SPIE3425, 28–36 (1998).
[CrossRef]

Klocek, P.

P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).

Morrish, A. A.

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

Oppenheim, U. P.

Palik, E. O.

E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

Palmer, J. M.

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. II.

Sheffer, D.

Snail, K. A.

D. B. Chenault, K. A. Snail, L. M. Hanssen, “Improved integrating-sphere throughput with a lens and nonimaging concentrator,” Appl. Opt. 34, 7959–7964 (1995).
[CrossRef] [PubMed]

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

Wang, T. M.

T. M. Wang, K. L. Eckerle, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (U.S. Government Printing Office, Washington, D.C., 1990).

Anal. Chim. Acta (2)

L. M. Hanssen, S. G. Kaplan, “Infrared diffuse reflectance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 289–302 (1999).
[CrossRef]

S. G. Kaplan, L. M. Hanssen, “Infrared regular reflectance and transmittance instrumentation and standards at NIST,” Anal. Chim. Acta 380, 303–310 (1999).
[CrossRef]

Appl. Opt. (3)

Spectrosc. Eur. (1)

J. R. Birch, F. J. J. Clarke, “Fifty sources of error in Fourier transform spectroscopy,” Spectrosc. Eur. 7, 16–22 (1995).

Other (8)

E. O. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).

P. Klocek, Handbook of Infrared Optical Materials (Wiley, New York, 1991).

L. M. Hanssen, S. G. Kaplan, “Problems posed by scattering transmissive materials for accurate transmittance and reflectance measurements,” in Optical Diagnostic Methods for Inorganic Transmissive Materials, R. U. Datla, L. M. Hanssen, eds., Proc. SPIE3425, 28–36 (1998).
[CrossRef]

“Absolute methods for reflection measurement,” (CIE, Vienna, 1979).

J. M. Palmer, “The measurement of transmission, absorption, emission, and reflection,” in Handbook of Optics (American Institute of Physics, New York, 1997), Vol. II.

K. A. Snail, A. A. Morrish, L. M. Hanssen, “Absolute specular reflectance measurements in the infrared,” in Materials and Optics for Solar Energy Conversion and Advanced Lighting Technology, S. Holly, C. M. Lampert, eds., Proc. SPIE692, 143–150 (1986).
[CrossRef]

T. M. Wang, K. L. Eckerle, J. J. Hsia, “Absolute specular reflectometer with an autocollimator telescope and auxiliary mirrors,” NIST Tech. Note 1280 (U.S. Government Printing Office, Washington, D.C., 1990).

F. J. J. Clarke, “Infrared regular reflectance standards from NPL,” in Developments in Optical Coatings, I. Ried, ed., Proc. SPIE2776, 184–195 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photograph of the integrating sphere for absolute IR spectral transmittance and reflectance. The Hg:Cd:Te (MCT) detector Dewar (white) is mounted on the top of the sphere. We view the back side of the sphere that includes reference (empty) and sample (with a KRS-5 window) ports. A pair of rotation stages underneath the sphere is used to move the sphere into positions for both reflectance and transmittance measurements.

Fig. 2
Fig. 2

Diagram of sphere interior and arrangement of its elements. Input and reflected beams are shown for a specular sample in the reflectance measurement geometry. The sample and the reference specular regions of the sphere wall are the first to be illuminated in the sample and the reference measurements, respectively. The baffles are positioned for measurement of diffuse samples and are not critical for specular sample measurement.

Fig. 3
Fig. 3

Sphere measurement geometries for reflectance and transmittance and rotation steps used to orient the sphere for each (a) reflectance measurement geometry, (c) reference measurement, and (e) transmittance measurement geometry. (b) and (d) are intermediate steps. Two rotation stages, stage 1 centered at the input-beam focus and sphere wall and stage 2 centered at the sphere center, are used to change geometries.

Fig. 4
Fig. 4

Sample- and reference-port throughput comparison, the result of an empty-sample-port transmittance measurement. The curve represents the difference in detector signal for specularly transmitted and reflected light from the sample compared with light in the reference case. This spectrum can be used in either of two ways: (1) as a component to the systematic uncertainty of ρ or τ, or (2) as a correction spectrum to divide into the initially obtained spectra of ρ or τ to eliminate the error.

Fig. 5
Fig. 5

Sample-port overfill measurement, the result of an empty-sample-port reflectance measurement. This is a characterization of the baseline measurement capability of the integrating-sphere system. The result can be used to apply corrections to a black sample measurement.

Fig. 6
Fig. 6

Transmittance, reflectance, and absorptance (obtained from 1 - ρ - τ) of several common IR window materials, ranging in index from 3.4 to 1.3: (a) Si, (b) ZnSe, (c) KRS-5, (d) MgF2.

Fig. 7
Fig. 7

Expanded plot of spectra shown in Fig. 6, highlighting regions with absorptance near zero: (a) Si, (b) ZnSe, (c) KRS-5, (d) MgF2. The spectra, in regions where k should be negligible,12 result from a combination of (1) cumulative measurement error from all sources in transmittance and reflectance, and (2) additional absorption that is due to volume or surface contaminants such as hydrocarbons and water. The MgF2 spectrum also shows regions of near-zero transmittance and reflectance at longer wavelengths.

Fig. 8
Fig. 8

Au electroplated mirror reflectance. The spectrum is a combination of near-IR (2–3.5 µm, circles) and mid-IR (3.5–18 µm, squares) spectra taken with different source–beam-splitter combinations of the FTIR. This accounts for the reduced noise near 2 µm in comparison with Fig. 6.

Metrics