Abstract

Sensors capable of making distributed measurements allow for monitoring of the entire structure. Optical fiber sensors are especially attractive for this purpose, since they are geometrically versatile and can be readily integrated within various types of structure and material. Development and characteristics of a quasi-distributed intrinsic fiber-optic strain sensor based on white-light interferometry are described. The research presented here describes the development of a new optical fiber sensor system for measurement of structural strains based on double white-light interferometry. Individual segments of single-mode optical fibers forming a common-path interferometer are linked in series, and a scanning white-light interferometer provides for distributed sensing of strain signals from various locations in the structure. The system is configured for automatic compensation of drift due to environmental effects, i.e., temperature and vibration. Strain gauges were employed for comparison and verification of strain signals as measured by the new system. The experimental results demonstrate the linearity of the system and the capability for distributed sensing of strains.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ansari, “Theory and applications of integrated fiber optic sensors in structures,” in Intelligent Civil Engineering Materials and Structures, F. Ansari, ed. (ASCE Press, Reston, Va., 1997), pp. 2–28.
  2. X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).
  3. W. C. Michie, B. Culshaw, “Detection of moisture in concrete by optical fibers,” Cement Concrete Composites 19, 35–44 (1997).
    [CrossRef]
  4. V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
    [CrossRef]
  5. A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–118 (1993).
  6. Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
    [CrossRef]
  7. T. Y. Liu, J. Cory, D. A. Jackson, “Partially multiplexing sensor network exploiting low coherence interferometry,” Appl. Opt. 32, 1100–1103 (1993).
    [CrossRef] [PubMed]
  8. Y. J. Rao, D. A. Jackson, “A prototype multiplexing system for use with a large number of fiber-optic based extrinsic Fabry–Perot sensor exploiting low coherence interrogation,” in Distributed and Multiplexed Fiber Optic Sensors V, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE2507, 90–98 (1995).
    [CrossRef]
  9. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).
  10. J. L. Santos, D. A. Jackson, “Coherence sensing of time-addressed optical-fiber sensors illuminated by a multimode laser diode,” Appl. Opt. 30, 5068–5076 (1991).
    [CrossRef] [PubMed]
  11. D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34, 1912–1915 (1995).
    [CrossRef]
  12. M. Born, E. Wolf, Principle of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999), pp. 352–359.
  13. J. S. Sirkis, H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers,” IEEE J. Lightwave Technol. LT-8, 1497–1503 (1990).
    [CrossRef]

2000 (2)

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
[CrossRef]

1999 (1)

X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).

1997 (1)

W. C. Michie, B. Culshaw, “Detection of moisture in concrete by optical fibers,” Cement Concrete Composites 19, 35–44 (1997).
[CrossRef]

1995 (1)

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34, 1912–1915 (1995).
[CrossRef]

1993 (2)

T. Y. Liu, J. Cory, D. A. Jackson, “Partially multiplexing sensor network exploiting low coherence interferometry,” Appl. Opt. 32, 1100–1103 (1993).
[CrossRef] [PubMed]

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–118 (1993).

1991 (1)

1990 (1)

J. S. Sirkis, H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers,” IEEE J. Lightwave Technol. LT-8, 1497–1503 (1990).
[CrossRef]

1985 (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Ansari, F.

Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
[CrossRef]

X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).

F. Ansari, “Theory and applications of integrated fiber optic sensors in structures,” in Intelligent Civil Engineering Materials and Structures, F. Ansari, ed. (ASCE Press, Reston, Va., 1997), pp. 2–28.

Born, M.

M. Born, E. Wolf, Principle of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999), pp. 352–359.

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Chen, Z.

Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
[CrossRef]

X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).

Cory, J.

Culshaw, B.

W. C. Michie, B. Culshaw, “Detection of moisture in concrete by optical fibers,” Cement Concrete Composites 19, 35–44 (1997).
[CrossRef]

Gu, X.

X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).

Haslach, H. W.

J. S. Sirkis, H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers,” IEEE J. Lightwave Technol. LT-8, 1497–1503 (1990).
[CrossRef]

Inaudi, D.

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34, 1912–1915 (1995).
[CrossRef]

Jackson, D. A.

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

T. Y. Liu, J. Cory, D. A. Jackson, “Partially multiplexing sensor network exploiting low coherence interferometry,” Appl. Opt. 32, 1100–1103 (1993).
[CrossRef] [PubMed]

J. L. Santos, D. A. Jackson, “Coherence sensing of time-addressed optical-fiber sensors illuminated by a multimode laser diode,” Appl. Opt. 30, 5068–5076 (1991).
[CrossRef] [PubMed]

Y. J. Rao, D. A. Jackson, “A prototype multiplexing system for use with a large number of fiber-optic based extrinsic Fabry–Perot sensor exploiting low coherence interrogation,” in Distributed and Multiplexed Fiber Optic Sensors V, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE2507, 90–98 (1995).
[CrossRef]

Kersey, A. D.

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–118 (1993).

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Lecoeuche, V.

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

Li, Q.

Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
[CrossRef]

Liu, T. Y.

Michie, W. C.

W. C. Michie, B. Culshaw, “Detection of moisture in concrete by optical fibers,” Cement Concrete Composites 19, 35–44 (1997).
[CrossRef]

Morey, W. W.

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–118 (1993).

Pannel, C. N.

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

Rao, Y. J.

Y. J. Rao, D. A. Jackson, “A prototype multiplexing system for use with a large number of fiber-optic based extrinsic Fabry–Perot sensor exploiting low coherence interrogation,” in Distributed and Multiplexed Fiber Optic Sensors V, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE2507, 90–98 (1995).
[CrossRef]

Santos, J. L.

Shaw, H. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Sirkis, J. S.

J. S. Sirkis, H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers,” IEEE J. Lightwave Technol. LT-8, 1497–1503 (1990).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Webb, D. J.

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Wolf, E.

M. Born, E. Wolf, Principle of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999), pp. 352–359.

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

Appl. Opt. (2)

Cement Concrete Composites (1)

W. C. Michie, B. Culshaw, “Detection of moisture in concrete by optical fibers,” Cement Concrete Composites 19, 35–44 (1997).
[CrossRef]

Electron. Lett. (1)

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fiber-laser strain sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–118 (1993).

IEEE J. Lightwave Technol. (1)

J. S. Sirkis, H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted, optical fibers,” IEEE J. Lightwave Technol. LT-8, 1497–1503 (1990).
[CrossRef]

J. Intell. Mater. Syst. Struct. (1)

X. Gu, Z. Chen, F. Ansari, “Method and theory for multi-gauge distributed fiber optic crack sensor,” J. Intell. Mater. Syst. Struct. 10, 266–273 (1999).

J. Lightwave Technol. (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. L. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1072 (1985).

J. Struct. Control (2)

V. Lecoeuche, D. J. Webb, C. N. Pannel, D. A. Jackson, “Distributed sensor for detection of impending structural failure along a 25-km optical fiber with 2 meter spatial resolution,” J. Struct. Control 7, 23–34 (2000).
[CrossRef]

Z. Chen, Q. Li, F. Ansari, “Serial multiplexing of optical fibers for sensing of structural strains,” J. Struct. Control 7, 103–117 (2000).
[CrossRef]

Opt. Eng. (1)

D. Inaudi, “Coherence multiplexing of in-line displacement and temperature sensors,” Opt. Eng. 34, 1912–1915 (1995).
[CrossRef]

Other (3)

M. Born, E. Wolf, Principle of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999), pp. 352–359.

Y. J. Rao, D. A. Jackson, “A prototype multiplexing system for use with a large number of fiber-optic based extrinsic Fabry–Perot sensor exploiting low coherence interrogation,” in Distributed and Multiplexed Fiber Optic Sensors V, J. P. Dakin, A. D. Kersey, eds., Proc. SPIE2507, 90–98 (1995).
[CrossRef]

F. Ansari, “Theory and applications of integrated fiber optic sensors in structures,” in Intelligent Civil Engineering Materials and Structures, F. Ansari, ed. (ASCE Press, Reston, Va., 1997), pp. 2–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the quasi-distributed sensor and interferometer assembly.

Fig. 2
Fig. 2

Construction details of individual sensors and schematic representation of reflected signals.

Fig. 3
Fig. 3

Optoelectrical signal processes within the system. GPIB, general-purpose interface bus.

Fig. 4
Fig. 4

Tensile test setup.

Fig. 5
Fig. 5

Output of the sensor 2 before and after compensation.

Fig. 6
Fig. 6

Calibration results for sensors 1 and 3.

Fig. 7
Fig. 7

Instrumentation of the beam with various sensors

Fig. 8
Fig. 8

Instrumented beam under four-point-bending test setup

Fig. 9
Fig. 9

Comparison of the measured strains by fiber-optic sensors and strain gauge system.

Fig. 10
Fig. 10

Displacement of the beam as measured by the fiber-optic sensor (FOS) and the LVDT

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E=i=1m Eiexp-j2πvt-2k¯L0+h=1h=i nLh,
Er=i=1m Eiexp-j2πv¯t-2k¯×L0+j=1j=inLj+Lr,
Em=i=1n Eiexp-j2πv¯t-2k¯×L0+j=1j=inLj+Lm,
Ic=Er+EmEr+em*=i=1n Ei2+2i=1n EiEi+1 cos 2knLi-xνnLi-x+ ,
ν(nLi-x)=exp-1.89nLi-xLc2.
OLC=Δxi2=nL n-12 n2P12-νfP11+P12 xx,
xx=Δxi/2.38L.
Ih=I0RT2h=I0R1-R-A2h,
Xmin=Ln-L0+Δn,
Ic=i=1n Ei2+2 i=1n EiEi+1 cos 2knLi+Δint-x×ν(nLi+Δint-x)+ .

Metrics