Abstract

The numerical evaluation of surface integrals is the most time-consuming part of the extended boundary condition method (EBCM) for calculating the T matrix. An efficient implementation of the method is presented for homogeneous particles with discrete geometric symmetries and is applied to regular polyhedral prisms of finite length. For such prisms, an efficient quadrature scheme for computing the surface integrals is developed. Exploitation of these symmetries in conjunction with the new quadrature scheme leads to a reduction in CPU time by 3 orders of magnitude from that of a general EBCM implementation with no geometry-specific adaptations. The improved quadrature scheme and the exploitation of symmetries account for, respectively, 1 and 2 orders of magnitude in the total reduction of the CPU time. Test results for scattering by rectangular parallelepipeds and hexagonal plates are shown to agree well with corresponding results obtained by use of the discrete-dipole approximation. A model application for various polyhedral prisms is presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription