Abstract

We present a laser Doppler velocimeter that stores and delays the reference beam to preserve coherence with a long-path-length measurement beam. Our storage and delay technique relaxes the strict coherence requirements associated with lidar laser sources, permitting the use of low-coherence lasers. This technique potentially could reduce the cost and size of lidar systems for commercial applications. Experiments that use fiber-optic ring resonators to store the reference beams and generate reference pulse trains validated the concept. We obtained results at several simulated distances by beating each usable reference pulse with a delayed Doppler-shifted measurement beam reflected off a rotating mirror.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, R. S. Klein, P. A. Robinson, “Coherent lidar airborne wind sensor. II. Flight-test results at 2 and 10 µm,” Appl. Opt. 35, 7117–7127 (1996).
    [CrossRef] [PubMed]
  2. K. G. Tatterson, “Avionics looks to photonics to watch turbulent skies,” Photon. Spectra 32, 20–21 (1998).
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
    [CrossRef]
  4. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  5. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [CrossRef] [PubMed]
  6. H. W. Mocker, T. J. Wagner, “Laser Doppler optical air-data system: feasibility demonstration and systems specifications,” Appl. Opt. 33, 6457–6471 (1994).
    [CrossRef] [PubMed]
  7. J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
    [CrossRef]
  8. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
    [CrossRef]
  9. E. Biselli, C. Werner, “Determination of the direction of motion on the basis of cw-homodyne laser Doppler radar,” Appl. Opt. 28, 915–920 (1989).
    [CrossRef] [PubMed]
  10. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1986).

1998 (2)

K. G. Tatterson, “Avionics looks to photonics to watch turbulent skies,” Photon. Spectra 32, 20–21 (1998).

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

1996 (1)

1994 (3)

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

1989 (2)

Ames, L. L.

Biselli, E.

Bowers, M. S.

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

Brockman, P.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

Calloway, R. S.

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1986).

Forney, P.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

Harris, M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Hawley, J. G.

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Huffaker, R. M.

Karlsson, C.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Kavaya, M. J.

Klein, R. S.

Lee, R. W.

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

Letalick, D.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

Menzies, R. T.

Mocker, H. W.

Otto, R. G.

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Petheram, J. C.

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

Robinson, P. A.

Romea, R.

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

Sroga, J. T.

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

Steakley, B. C.

Stone, R.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

Swanson, D.

Targ, R.

Tatterson, K. G.

K. G. Tatterson, “Avionics looks to photonics to watch turbulent skies,” Photon. Spectra 32, 20–21 (1998).

Tratt, D. M.

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Wagner, T. J.

Werner, C.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

Zarifis, V.

Appl. Opt. (4)

IEEE Trans. Geosci. Remot Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remot Sens. 31, 4–14 (1993).
[CrossRef]

J. Mod. Opt. (2)

J. T. Sroga, J. C. Petheram, M. S. Bowers, R. Romea, R. W. Lee, “Frequency spectral measurements of a pulsed, TE CO2 laser incorporating LAWS transmitter design features,” J. Mod. Opt. 41, 2085–2100 (1994).
[CrossRef]

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, C. Karlsson, “The role of coherence length in continuous-wave coherent lidar,” J. Mod. Opt. 45, 1567–1581 (1998).
[CrossRef]

Opt. Lett. (1)

Photon. Spectra (1)

K. G. Tatterson, “Avionics looks to photonics to watch turbulent skies,” Photon. Spectra 32, 20–21 (1998).

Other (1)

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the standard injection-locked lidar, which uses separate lasers for measurement and reference beams.

Fig. 2
Fig. 2

Schematic of a low-coherence lidar in a fiber-optic implementation, showing a fiber-optic storage loop and measurement volumes separated by half of the length of the storage loop.

Fig. 3
Fig. 3

Optical arrangement for validation of the low-coherence lidar concept.

Fig. 4
Fig. 4

Typical output pulses from the AOM and from the storage loop.

Fig. 5
Fig. 5

Typical Doppler burst signal from a single photodetector and from the differencing arrangement. The measurement pulse is adjusted to interfere with the second reference pulse.

Fig. 6
Fig. 6

Main part of the Doppler burst spectrum for unshifted and Doppler-shifted signals.

Fig. 7
Fig. 7

Longitudinal laser modes of the reference and measurement beams, illustrating generation of the 260- and 176-MHz beat signals.

Fig. 8
Fig. 8

Doppler versus tachometer measured velocity for the first four reference pulses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pn=CPinput1-C-Ln,
n=logPmin/CPinputlog1-C-L.
Δν=2v cosθλ,

Metrics