Abstract

A multiple-return-pass equation for beam divergence that is applicable to multiple-prism grating tunable laser oscillators is derived by use of ray-transfer matrices. This beam divergence is then incorporated into the multiple-return-pass dispersive linewidth equation. A discussion of the application of the equation is given.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  2. M. K. Iles, “Unified single-pass model of linewidths in the Hänsch single- and double-grating grazing incidence dye lasers,” Appl. Opt. 20, 985–988 (1981).
    [CrossRef]
  3. F. J. Duarte, “Ray transfer matrix analysis of multiple-prism dye laser oscillators,” Opt. Quantum Electron. 21, 47–54 (1989).
    [CrossRef]
  4. F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
    [CrossRef]
  5. V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
    [CrossRef]
  6. A. A. Pease, W. M. Pearson, “Axial mode structure of a copper vapor pumped dye laser,” Appl. Opt. 16, 57–60 (1977).
    [CrossRef] [PubMed]
  7. S. Lavi, M. Amit, G. Bialolanker, E. Miron, L. A. Levin, “High-repetition-rate high-power variable-bandwidth dye laser,” Appl. Opt. 24, 1905–1909 (1985).
    [CrossRef] [PubMed]
  8. O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
    [CrossRef]
  9. F. J. Duarte, J. A. Piper, “Multi-pass dispersion theory of prismatic pulsed dye lasers,” Opt. Acta 31, 331–335 (1984).
    [CrossRef]
  10. J. K. Robertson, Introduction to Optics: Geometrical and Physical (Van Nostrand, New York, 1955).
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  12. F. J. Duarte, “Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)-1: a note on its origin,” Appl. Opt. 31, 6979–6982 (1992).
    [CrossRef] [PubMed]
  13. F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
    [CrossRef]
  14. F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
    [CrossRef]
  15. F. P. Schäfer, “Principles of dye laser operation,” in Dye Lasers, 3rd ed., F. P. Schäfer, ed., (Springer-Verlag, Berlin, 1990), pp. 1–85.
  16. F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
    [CrossRef]
  17. F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
    [CrossRef]

2000 (1)

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

1999 (1)

1997 (2)

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

1995 (1)

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

1992 (1)

1989 (1)

F. J. Duarte, “Ray transfer matrix analysis of multiple-prism dye laser oscillators,” Opt. Quantum Electron. 21, 47–54 (1989).
[CrossRef]

1985 (1)

1984 (1)

F. J. Duarte, J. A. Piper, “Multi-pass dispersion theory of prismatic pulsed dye lasers,” Opt. Acta 31, 331–335 (1984).
[CrossRef]

1981 (1)

1978 (1)

1977 (1)

1975 (1)

V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
[CrossRef]

Amit, M.

Bhatnagar, R.

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Bialolanker, G.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Chernenko, A. A.

V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
[CrossRef]

Costela, A.

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Disik, S. K.

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Duarte, F. J.

F. J. Duarte, “Multiple-prism grating solid-state dye laser oscillator: optimized architecture,” Appl. Opt. 38, 6347–6349 (1999).
[CrossRef]

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)-1: a note on its origin,” Appl. Opt. 31, 6979–6982 (1992).
[CrossRef] [PubMed]

F. J. Duarte, “Ray transfer matrix analysis of multiple-prism dye laser oscillators,” Opt. Quantum Electron. 21, 47–54 (1989).
[CrossRef]

F. J. Duarte, J. A. Piper, “Multi-pass dispersion theory of prismatic pulsed dye lasers,” Opt. Acta 31, 331–335 (1984).
[CrossRef]

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
[CrossRef]

Ehrlich, J. J.

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Iles, M. K.

Ishchenko, V. N.

V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
[CrossRef]

Jain, R.

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Lavi, S.

Levin, L. A.

Lisitsyn, V. N.

V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
[CrossRef]

Littman, M. G.

Metcalf, H. J.

Miron, E.

Nakhe, S. V.

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Pearson, W. M.

Pease, A. A.

Piper, J. A.

F. J. Duarte, J. A. Piper, “Multi-pass dispersion theory of prismatic pulsed dye lasers,” Opt. Acta 31, 331–335 (1984).
[CrossRef]

Prakash, O.

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Robertson, J. K.

J. K. Robertson, Introduction to Optics: Geometrical and Physical (Van Nostrand, New York, 1955).

Sastre, R.

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Schäfer, F. P.

F. P. Schäfer, “Principles of dye laser operation,” in Dye Lasers, 3rd ed., F. P. Schäfer, ed., (Springer-Verlag, Berlin, 1990), pp. 1–85.

Taylor, T. S.

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Appl. Opt. (6)

Opt. Acta (1)

F. J. Duarte, J. A. Piper, “Multi-pass dispersion theory of prismatic pulsed dye lasers,” Opt. Acta 31, 331–335 (1984).
[CrossRef]

Opt. Commun. (2)

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

O. Prakash, S. K. Disik, R. Jain, S. V. Nakhe, R. Bhatnagar, “Single pulse time resolved studies on the characteristics of a transverse pumped HMP-GIG dye laser and the role of beam divergence,” Opt. Commun. 178, 177–189 (2000).
[CrossRef]

Opt. Laser Technol. (1)

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator,” Opt. Laser Technol. 29, 513–516 (1997).
[CrossRef]

Opt. Quantum Electron. (2)

F. J. Duarte, “Ray transfer matrix analysis of multiple-prism dye laser oscillators,” Opt. Quantum Electron. 21, 47–54 (1989).
[CrossRef]

F. J. Duarte, A. Costela, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. N. Ishchenko, V. N. Lisitsyn, A. A. Chernenko, “Tunable dye laser pumped transversely by an ultraviolet laser,” Sov. J. Quantum Electron. 5, 461–462 (1975).
[CrossRef]

Other (4)

J. K. Robertson, Introduction to Optics: Geometrical and Physical (Van Nostrand, New York, 1955).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
[CrossRef]

F. P. Schäfer, “Principles of dye laser operation,” in Dye Lasers, 3rd ed., F. P. Schäfer, ed., (Springer-Verlag, Berlin, 1990), pp. 1–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

MPL grating solid-state dye laser oscillator.14 M is the polarizer output coupler mirror.

Tables (2)

Tables Icon

Table 1 Measured Single-Longitudinal-Mode Laser Linewidth (Δν M ) and Hybrid Multiple-Return-Pass Dispersive Linewidth (Δν H ) from Measured Δθ Valuesa

Tables Icon

Table 2 Dependence of Δθ R on R in the Absence of Thermal Lensing

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔλΔθλΦ-1,
λΦ=RMλΘG+RλΦP,
ΔλΔθRMλΘG+RλΦP-1.
Δθ=λ/πw1+L/B2+LA/B21/2,
ΔθR=λ/πw1+L/BR2+LAR/BR21/2,
ΔλΔθRRMλΘG+RλΦP-1.
AR=αAR-1+χR-1α+χΞ-L2+χR-1χL2+δ+χAR-1αL2+β,
BR=ARΛ+αAR-1+χR-1β+δΞ-L2+δR-1χL2+δ+δAR-1αL2+β,
R-1=ΛAR-1+BR-1,
Ξ=2L2+2BMP/M)+2L3/M2,
Λ=LP/nP+L1.

Metrics