Abstract

A thermal luminescence (TL) spectroscopy method for detecting organic impurities in water solution is presented. Infrared emissions by the dissolved organic matter are measurable, once a thermal gradient between it and the water medium is established, at those TL frequencies that are absorbed by the contaminant, following irradiation by a pulsed microwave beam. This detection window of opportunity closes as the liquid reaches thermal equilibrium at elevated temperatures and on collapse of the gradient. TL radiance liberated by a suspected contaminated water sample is scanned interferometrically about the maximum thermal gradient event, where N interferograms are acquired and grouped into contiguous sets of two, with N/2 interferogram elements per set. The coadded averages of these sets enhance the sensitivity of measurement to a small variance in emissivity and are Fourier transformed, and the adjacent spectra are subtracted. The difference spectrum is preprocessed with linear baseline, noise filtration, scaling, and parity operators to reveal a clear emissions band signature of the solute of dimethylmethylphosphonate to concentrations of parts per 103 and less. An artificial neural network facilitates detection of the contaminant by pattern recognition of the contaminant’s infrared band signature.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
    [CrossRef]
  2. C. R. Morlock, “In situ monitoring of gasoline concentrations with fiber optic chemical sensors,” in Proceedings of the Third National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods (Water Well Journal, Dublin, Ohio, 1989), pp. 31–41.
  3. J.W. Haas, T. G. Matthews, R. B. Gammage, “In situ fiberoptic monitors for site characterization,” in Proceedings of the Information Exchange Meeting on Characterization, Sensors, and Monitoring Technologies, Rep. CONF-920791, Order No. DE93005318 (U.S. GPO, Washington, D.C., 1992), pp. 261–268.
  4. M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.
  5. J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.
  6. A. H. Carrieri, I. F. Barditch, D. J. Owens, E. S. Roese, P. I. Lim, M. V. Talbard, “Thermal luminescence sensor for ground path contamination detection,” Appl. Opt. 38, 5880–5886 (1999).
    [CrossRef]
  7. S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
    [CrossRef]
  8. H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
    [CrossRef]
  9. F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
    [CrossRef]
  10. A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995).
    [CrossRef] [PubMed]

1999 (2)

E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
[CrossRef]

A. H. Carrieri, I. F. Barditch, D. J. Owens, E. S. Roese, P. I. Lim, M. V. Talbard, “Thermal luminescence sensor for ground path contamination detection,” Appl. Opt. 38, 5880–5886 (1999).
[CrossRef]

1995 (1)

1989 (1)

S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
[CrossRef]

1988 (1)

F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
[CrossRef]

1968 (1)

H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
[CrossRef]

Ahmed, S.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Barditch, I. F.

Carrieri, A. H.

Christol, H.

H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
[CrossRef]

Covitz, F.

F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
[CrossRef]

Farquhar, G. J.

M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.

Gammage, R. B.

J.W. Haas, T. G. Matthews, R. B. Gammage, “In situ fiberoptic monitors for site characterization,” in Proceedings of the Information Exchange Meeting on Characterization, Sensors, and Monitoring Technologies, Rep. CONF-920791, Order No. DE93005318 (U.S. GPO, Washington, D.C., 1992), pp. 261–268.

Haas, J.W.

J.W. Haas, T. G. Matthews, R. B. Gammage, “In situ fiberoptic monitors for site characterization,” in Proceedings of the Information Exchange Meeting on Characterization, Sensors, and Monitoring Technologies, Rep. CONF-920791, Order No. DE93005318 (U.S. GPO, Washington, D.C., 1992), pp. 261–268.

Huang, S.

F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
[CrossRef]

Ismail, M. I.

M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.

Jarvis, G. B.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Kenny, J. E.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Levy, M.

H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
[CrossRef]

Li, S.

S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
[CrossRef]

Liao, X.

S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
[CrossRef]

Lim, P. I.

Marty, C.

H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
[CrossRef]

Matthews, T. G.

J.W. Haas, T. G. Matthews, R. B. Gammage, “In situ fiberoptic monitors for site characterization,” in Proceedings of the Information Exchange Meeting on Characterization, Sensors, and Monitoring Technologies, Rep. CONF-920791, Order No. DE93005318 (U.S. GPO, Washington, D.C., 1992), pp. 261–268.

McBean, E. A.

M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.

Morlock, C. R.

C. R. Morlock, “In situ monitoring of gasoline concentrations with fiber optic chemical sensors,” in Proceedings of the Third National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods (Water Well Journal, Dublin, Ohio, 1989), pp. 31–41.

Owens, D. J.

Prasad, T.

M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.

Roese, E. S.

Talbard, M. V.

Tran, K.

E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
[CrossRef]

Westheimer, F. H.

F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
[CrossRef]

Xu, H.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Yu, C. C.

E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
[CrossRef]

Yuan, C.

S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
[CrossRef]

Zeng, E. Y.

E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
[CrossRef]

Zhang, Z.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Appl. Opt. (2)

Environ. Sci. Technol. (1)

E. Y. Zeng, C. C. Yu, K. Tran, “In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California,” Environ. Sci. Technol. 33, 392–398 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

F. H. Westheimer, S. Huang, F. Covitz, “Rates and mechanisms of hydrolysis of esters of phosphorous acid,” J. Am. Chem. Soc. 110, 181–185 (1988).
[CrossRef]

J. Organometal. Chem. (1)

H. Christol, M. Levy, C. Marty, “Hydrolyse basique de phosphonates. I. Ètude qualitative,” J. Organometal. Chem. 12, 459–470 (1968).
[CrossRef]

J. Phys. Org. Chem. (1)

S. Li, X. Liao, C. Yuan, “Studies of organophosphorus compounds. XXXII. A molecular mechanics study of the hydrolytic reaction of alkylphosphonates and alkylphosphonyl chlorides,” J. Phys. Org. Chem. 2, 146–160 (1989).
[CrossRef]

Other (4)

C. R. Morlock, “In situ monitoring of gasoline concentrations with fiber optic chemical sensors,” in Proceedings of the Third National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods (Water Well Journal, Dublin, Ohio, 1989), pp. 31–41.

J.W. Haas, T. G. Matthews, R. B. Gammage, “In situ fiberoptic monitors for site characterization,” in Proceedings of the Information Exchange Meeting on Characterization, Sensors, and Monitoring Technologies, Rep. CONF-920791, Order No. DE93005318 (U.S. GPO, Washington, D.C., 1992), pp. 261–268.

M. I. Ismail, G. J. Farquhar, T. Prasad, E. A. McBean, “Nondestructive techniques for monitoring soil/groundwater immiscible contaminants,” in Proceedings of the Symposium on the Chemistry and Physics of Composite Media (Electrochemical Society, Pennington, N.J., 1985), pp. 184–192.

J. E. Kenny, G. B. Jarvis, H. Xu, S. Ahmed, Z. Zhang, “In situ groundwater monitoring using luminescence methods,” presented at PACIFICHEM ’89—International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 19–22 December 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TLWM principal components: magnetron with tuner and waveguide for stimulation of thermal luminescence, steel microwave chamber encasing the sample glass cell for confinement microwave energy and focus into the liquid cell, and a Fourier-transform infrared spectrometer for spectral processing of thermal radiance emanating from the cell. Inset, the glass cell separated from a prototype model of the microwave chamber: 1, liquid sample intake port; 2, sample ejection port; 3, microwave input port; 4, TL exit window.

Fig. 2
Fig. 2

Typical data run of the TLWM: (a) contiguous, coadded and averaged interferogram sets measured up to the trailing edge of a fifth incident microwave beam pulse, 250 W, 1-s duration, irradiating DMMP diluted 50% by water; (b) superposition of graybody emissions spectra by Fourier transformation of interferogram sets (the spectral shift is exaggerated to clarify the effect of sample heating); (c) difference spectrum of the graybody curves; (d) comparison of processed sensor difference spectrum of Fig. 2(c)S) and standard spectrum.

Fig. 3
Fig. 3

Top, ambient MIR absorption spectra of pure liquid DMMP; center, a 50% mixture of the DMMP in water; bottom, pure water. The shift of bands between pure and dissolved DMMP liquids, in particular the PO═ stretching mode at 1245 and 1214 cm-1, respectively, implies the presence of hydrolysis (see Table 1). The hydrolytic mechanism is altered and apparently catalyzed in the mixture solution when it is irradiated with 2.45-GHz microwave light [see also Table 1 and Fig. 2(d)].

Fig. 4
Fig. 4

Neural network detection of chemical contamination in water by pattern recognition of its solute’s infrared difference spectrum. The network architecture comprises an input layer of 350 processing elements (neurons) that pass the sensor’s difference-spectrum output [e.g., Fig. 2(d) from 700 to 1400 cm-1 in 2-cm-1 resolution) through two successive hidden layers of 256 and 128 PEs onto an output layer of 9 PEs. This construction of hidden layers yielded good convergence in training of the network and high precision of detection. The network output layer represents components of a nine-dimensional vector; each analyte is uniquely associated with a single vector defined in the network training set. The PEs are fully connected between layers. This network architecture accommodates (exactly) the hardware configuration of eight Intel electronically trainable analog neural network chips configured for weight-matrix10 sharing.

Tables (1)

Tables Icon

Table 1 Comparison of MIR Vibration Band Center Frequencies (ν) from a Liquid Spectrum of ambient pure DMMP, a spectrum of an Ambient 50% Water Dilution of DMMP, and a Spectrum of the 50% Water-Diluted Solution Following Irradiation by a 2.45-GHz Microwave Beam

Metrics