Abstract

A new lidar instrument has been developed to measure tropospheric ozone and water vapor at low altitude. The lidar uses Raman scattering of an UV beam from atmospheric nitrogen, oxygen, and water vapor to retrieve ozone and water-vapor vertical profiles. By numerical simulation we investigate the sensitivity of the method to both atmospheric and device perturbations. The aerosol optical effect in the planetary boundary layer, ozone interference in water-vapor retrieval, statistical error, optical cross talk between Raman-shifted channels, and optical cross talk between an elastically backscattered signal in Raman-shifted signals and an afterpulse effect are studied in detail. In support of the main conclusions of this model study, time series of ozone and water vapor obtained at the Swiss Federal Institute of Technology in Lausanne and during a field campaign in Crete are presented. They are compared with point monitor and balloon sounding measurements for daytime and nighttime conditions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: theory, Experiments, and Applications (Academic, San Diego, Calif., 1999).
  2. A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).
  3. P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).
  4. S. Perego, “A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland),” Meteorol. Atmos. Phys. 70, 43–69 (1999).
    [CrossRef]
  5. B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).
  6. L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
    [CrossRef]
  7. L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.
  8. E. V. Browell, S. Ismail, T. Shipley, “UV DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  9. P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).
  10. P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).
  11. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  12. D. Renault, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
    [CrossRef]
  13. A. J. Sedlacek, M. D. Ray, “Raman DIAL: application to areas characterized by varying aerosol burden,” presented at the 19th International Laser Radar Conference, Annapolis, Md., July 1998.
  14. D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
    [CrossRef]
  15. T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
    [CrossRef]
  16. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), p. 89.
  17. J. A. Sunesson, “Differential absorption lidar system, for routine measurement of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
    [CrossRef] [PubMed]
  18. W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in American Institute of Physics Conference Proceedings No. 100: Excimer Lasers, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.
  19. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
    [CrossRef]
  20. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
    [CrossRef]
  21. W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
    [CrossRef]
  22. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  23. P. B. Coates, “A theory of afterpulse formation in photomultipliers and the prepulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
    [CrossRef]
  24. T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983).
    [CrossRef]
  25. P. B. Coates, “The origins of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
    [CrossRef]
  26. B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
    [CrossRef]
  27. V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
    [CrossRef]
  28. H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
    [CrossRef]
  29. A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).
  30. W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.
  31. A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
    [CrossRef]

2000 (1)

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

1999 (6)

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

S. Perego, “A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland),” Meteorol. Atmos. Phys. 70, 43–69 (1999).
[CrossRef]

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

1998 (2)

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

1997 (1)

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

1996 (1)

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).

1994 (3)

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

J. A. Sunesson, “Differential absorption lidar system, for routine measurement of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994).
[CrossRef] [PubMed]

1988 (1)

D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

1987 (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

1986 (1)

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

1985 (1)

1983 (2)

T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983).
[CrossRef]

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

1980 (1)

1973 (2)

P. B. Coates, “The origins of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the prepulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Ancellet, G.

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Antonioly, T.

T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983).
[CrossRef]

Atsumi, A.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Bais, A. F.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Benetti, P.

T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983).
[CrossRef]

Bishel, W. K.

W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in American Institute of Physics Conference Proceedings No. 100: Excimer Lasers, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Black, G.

W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in American Institute of Physics Conference Proceedings No. 100: Excimer Lasers, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Blumenthaler, M.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Bösenberg, J.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).

Browell, E. V.

Burrows, J. P.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Calpini, B.

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.

Capitini, R.

D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

D. Renault, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
[CrossRef]

Carleer, M.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Clappier, A.

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Coates, P. B.

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the prepulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

P. B. Coates, “The origins of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

Colin, R.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), p. 89.

Doddridge, B. G.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Durieux, E.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Evans, W. F. J.

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

Ferrare, R.

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: theory, Experiments, and Applications (Academic, San Diego, Calif., 1999).

Fiorani, L.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Franchois, P. R.

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

Graziani, G.

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Gross, M.

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

Gross, P.

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Grossi, P.

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

Guilmot, J. M.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Hasegawa, Y.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Heaps, W.

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

Hudson, R. D.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Ismail, S.

Ito, M.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Jaquet, L.

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Jeanneret, F.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Jimenez, R.

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

Johnson, B. J.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Johnson, J. E.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Komhyr, W. D.

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

Kosmidis, E.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Krueger, B. C.

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Kuebler, J.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Kylling, A.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Kyushima, H.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Larcheveque, G.

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

Larchevêque, G.

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Lazzarotto, B.

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

Luke, W. T.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Martilli, A.

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Matsuura, H.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Matthews, W. A.

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

Mc Gee, T. J.

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Mitev, V.

L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.

Molina, L. T.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Molina, M. J.

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

Moortgat, G. K.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Nagura, K.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Oba, K.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Oltmans, S. J.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

Pasi, F.

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Perego, S.

S. Perego, “A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland),” Meteorol. Atmos. Phys. 70, 43–69 (1999).
[CrossRef]

Pitts, J. N.

B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: theory, Experiments, and Applications (Academic, San Diego, Calif., 1999).

Pourny, J. C.

Quaglia, P.

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

Ray, M. D.

A. J. Sedlacek, M. D. Ray, “Raman DIAL: application to areas characterized by varying aerosol burden,” presented at the 19th International Laser Radar Conference, Annapolis, Md., July 1998.

Renault, D.

D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

D. Renault, J. C. Pourny, R. Capitini, “Daytime Raman-lidar measurements of water vapor,” Opt. Lett. 5, 233–235 (1980).
[CrossRef]

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), p. 89.

Sathya, V.

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Schneider, W.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

Schoulepnikoff, L.

L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.

Schreder, J.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Schult, I.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).

Sedlacek, A. J.

A. J. Sedlacek, M. D. Ray, “Raman DIAL: application to areas characterized by varying aerosol burden,” presented at the 19th International Laser Radar Conference, Annapolis, Md., July 1998.

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

Shipley, T.

Simeonov, V.

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Simon, P. C.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Singh, U.

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

Sunesson, J. A.

Suzuki, S.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Takeuchi, J.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Thompson, A. M.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Thunis, P.

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

Tyndall, G. S.

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

van den Bergh, H.

V. Simeonov, G. Larchevêque, P. Quaglia, H. van den Bergh, B. Calpini, “The influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999).
[CrossRef]

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.

Vandaele, A. C.

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

Völger, P.

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).

Weller, R.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Witte, J. C.

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

Yokota, H.

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Zerefos, C.

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Atmos. Environ. (1)

L. Fiorani, B. Calpini, L. Jaquet, H. van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the Medcaphot Trace campaign,” Atmos. Environ. 32, 2151–2159 (1998).
[CrossRef]

Beitr. Phys. Atmos. (1)

P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosol calculated at uv-Wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).

Chimia (1)

B. Calpini, V. Simeonov, F. Jeanneret, J. Kuebler, V. Sathya, H. van den Bergh, “Ozone LIDAR as an analytical tool in effective air pollution management: the Geneva 96 campaign,” Chimia 51, 700–704 (1997).

Eur. J. Anal. Chem. (1)

P. Quaglia, G. Larcheveque, R. Jimenez, V. Simeonov, G. Ancellet, H. van den Bergh, B. Calpini, “Planetary boundary layer ozone fluxes from combined airborne, ground based lidars and wind profiler measurements,” Eur. J. Anal. Chem. 27, 305–313 (1999).

Geophys. Res. Lett. (1)

A. M. Thompson, B. G. Doddridge, J. C. Witte, R. D. Hudson, W. T. Luke, J. E. Johnson, B. J. Johnson, S. J. Oltmans, R. Weller, “A Tropical Atlantic paradox: shipboard and satellite views of a tropospheric ozone maximum and wave-one in January–February 1999,” Geophys. Res. Lett. 27, 3317–3320 (2000).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

H. Kyushima, Y. Hasegawa, A. Atsumi, K. Nagura, H. Yokota, M. Ito, J. Takeuchi, K. Oba, H. Matsuura, S. Suzuki, “Photomultiplier tube of new dynode configuration,” IEEE Trans. Nucl. Sci. 41, 725–729 (1994).
[CrossRef]

Int. J. Env. Anal. Chem. (1)

B. Lazzarotto, V. Simeonov, P. Quaglia, G. Larchevêque, H. van den Bergh, B. Calpini, “A Raman differential absorption lidar for ozone and water vapor measurement in the lower troposphere,” Int. J. Env. Anal. Chem. 74, 255–261 (1999).
[CrossRef]

J. Appl. Meteorol. (2)

A. Clappier, A. Martilli, P. Gross, P. Thunis, F. Pasi, B. C. Krueger, B. Calpini, G. Graziani, H. van den Bergh, “Effect of sea breeze on air pollution in the Greater Athens area. I. Numerical simulations and field observations,” J. Appl. Meteorol. 39, 563–575 (1999).

P. Grossi, P. Thunis, A. Martilli, A. Clappier, “Effect of sea breeze on air pollution in the Greater Athens area. II. Analysis of different emission scenarios,” J. Appl. Meteorol. 39, 546–562 (1999).

J. Atmos. Oceanic Technol. (1)

D. Renault, R. Capitini, “Boundary-layer water vapor probing with a solar-blind Raman lidar: validation, meteorological observation and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988).
[CrossRef]

J. Geophys. Res. (3)

L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
[CrossRef]

A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2 absorption cross-section in the UV using a Fourier transform spectrometer,” J. Geophys. Res. 99, 25,599–25,605 (1994).
[CrossRef]

A. Kylling, A. F. Bais, M. Blumenthaler, J. Schreder, C. Zerefos, E. Kosmidis, “The effect of aerosols on solar UV irradiances during the PAUR campaign,” J. Geophys. Res. 103, 26,151–26,060 (1998).

J. Geophys. Res. Lett. (1)

T. J. Mc Gee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” J. Geophys. Res. Lett. 20, 955–958 (1983).
[CrossRef]

J. Photochem. Photobiol. A (1)

W. Schneider, G. K. Moortgat, G. S. Tyndall, J. P. Burrows, “Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
[CrossRef]

J. Phys. D (2)

P. B. Coates, “The origins of afterpulses in photomultipliers,” J. Phys. D 6, 1159–1166 (1973).
[CrossRef]

P. B. Coates, “A theory of afterpulse formation in photomultipliers and the prepulse height distribution,” J. Phys. D 6, 1862–1869 (1973).
[CrossRef]

Meteorol. Atmos. Phys. (1)

S. Perego, “A numerical mesoscale model for simulation of regional photosmog in complex terrain: model description and application during POLLUMET 1993 (Switzerland),” Meteorol. Atmos. Phys. 70, 43–69 (1999).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

T. Antonioly, P. Benetti, “Study of afterpulse effects in photomultipliers,” Rev. Sci. Instrum. 54, 1777–1780 (1983).
[CrossRef]

Other (7)

A. J. Sedlacek, M. D. Ray, “Raman DIAL: application to areas characterized by varying aerosol burden,” presented at the 19th International Laser Radar Conference, Annapolis, Md., July 1998.

W. D. Komhyr, S. J. Oltmans, P. R. Franchois, W. F. J. Evans, W. A. Matthews, “The latitudinal distribution of ozone to 35 km altitude from ECC observations, 1985–1987,” in Proceedings of the Quadrennial Ozone Symposium and Tropospheric Ozone Workshop, R. D. Bojkov, P. Fabian, eds. (Deepak, Hampton, Va., 1989), pp. 147–150.

B. J. Finlayson-Pitts, J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: theory, Experiments, and Applications (Academic, San Diego, Calif., 1999).

L. Schoulepnikoff, H. van den Bergh, B. Calpini, V. Mitev, “Tropospheric air pollution monitoring lidar,” in Encyclopedia of Environmental Analysis and Remediation, R. A. Meyers, ed. (Wiley, New York, 1998), pp. 4873–4909.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).

R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), p. 89.

W. K. Bishel, G. Black, “Wavelength dependence of Raman scattering cross-sections from 200–600 nm,” in American Institute of Physics Conference Proceedings No. 100: Excimer Lasers, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–194.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of Raman lidar. A pulsed laser beam (PB) is emitted into the atmosphere via a beam expander (3×) and a set of right-angle prisms. The elastically backscattered signal (EBS) and the Raman-shifted backscattered signals (RBSs) are collected by a 200-mm Newtonian telescope, filtered at the entrance of a polychromator where they are spectrally resolved, and detected by three photomultiplier tubes (PMTs). The PMT signals are stored in a transient recorder (20-MHz/12-bit and photon counting) and a PC-based computer unit allows for real-time ozone and water-vapor retrieval (raw data).

Fig. 2
Fig. 2

Ozone effect on water-vapor retrieval. Predicted error in the water-vapor mixing ratio retrieved by Raman lidar as a result of various ozone constant vertical profiles and a homogeneous aerosol load. The horizontal scale is the difference between the water-vapor retrieval without the ozone absorption taken into account and the same retrieval with ozone absorption.

Fig. 3
Fig. 3

Statistical noise. Predicted standard deviations for (a) ozone and (b) water-vapor Raman lidar retrieval as a result of statistical noise (Poisson statistics) with the experimental parameters defined in Table 2.

Fig. 4
Fig. 4

Optical cross talk. Predicted error in water-vapor Raman lidar retrieval owing to optical cross talk between water-vapor and oxygen Raman signals. The horizontal scale is the difference between the water-vapor mixing-ratio retrieval without the cross-talk effect and the same retrieval biased by the cross-talk effect.

Fig. 5
Fig. 5

APE. Predicted error in (a) ozone and (b) water-vapor Raman lidar retrieval owing to the APE. The horizontal scale is the difference between the ozone and the water-vapor mixing-ratio retrievals with and without the APE. The model lidar signals are also shown relative to their typical ADC voltage intensities (log scale) with the Raman oxygen and nitrogen signals for ozone and with the Raman water-vapor and oxygen signals for the water-vapor mixing ratio.

Fig. 6
Fig. 6

Ozone Raman DIAL obtained in March 1999 for a time series of 28 h. The ozone concentrations measured at the ground are given by an UV absorption detector. They are measured by Raman DIAL from altitudes of 200 to 700 m AGL. The spatial resolution is 90 m, and the time resolution is 30 min.

Fig. 7
Fig. 7

Water-vapor mixing ratio retrieved by Raman lidar obtained in March 1999 for a time series of 24 h from altitudes of 200–1200 m AGL. The water vapor relative humidity measured at the ground is given by a standard meteorological station. The latter values are also used at 270 m AGL as reference values for the first altitude range of the Raman lidar profile. The spatial resolution is 22.5 m, and the time resolution is 30 min.

Fig. 8
Fig. 8

Difference in the water-vapor mixing-ratio retrieval ΔH2O uncorrected for the ozone differential absorption effect compared with the corrected time series. Small values of ΔH2O along the entire vertical range are associated with low ozone content in the atmosphere. Note that negative ΔH2O values (>-0.1 g of H2O/kg of dry air) are also indicative of the limit of precision of the method (±2%).

Fig. 9
Fig. 9

Raman lidar water-vapor measurements compared with balloon soundings. The lidar data are shown with a spatial resolution of 22.5 m and a time resolution of 30 min. They are compared with 1-s balloon data recorded at an ascent speed of ∼5 m/s. The water-vapor balloon measurement at 210 m ASL is used as an absolute calibration for the lidar signal. The water-vapor mixing-ratio vertical profile retrieved by Raman lidar is shown with the ozone concentration profile measured simultaneously by balloon taken into account (Lidar with ozone correction). The same lidar profile is also shown without this correction (Lidar uncorrected). The corresponding difference (Lidar uncorrected & lidar) may be compared with results presented in Fig. 8. The relative difference (Lidar & sonde) indicates values below 15% over the entire range of measurement. This comparison was made in May 1999 in Crete during the PAUR II experiment with the Raman lidar on board the EPFL lidar trailer.

Tables (2)

Tables Icon

Table 1 Spectroscopic Data Used for a 266-nm Pump Laser Source

Tables Icon

Table 2 Experimental Inputs for the Raman Lidar Simulation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

PXλXRaman, R=PLλLKXORR2 nXRβXRamanΔR×exp-0RαLr+αXr+nO3rσL+σXdr,
nO3R=1σO2-σN2ddRlnPN2RPO2R-αO2R-αN2RσO2-σN2.
nH2OnN2R=PH2OPN2RKN2KH2OβN2RamanβH2ORaman×exp0RσH2O-σN2nO3rozone correction+αH2Or-αN2rdr.
Δmol=αO2mol-αN2molnairmolσO2-σN2,
βg=nairmoldσRayleighπdΩ=nairmol550λL45.45×10-32,
ΔaerΔmol=λL-3λO2Raman-1-λN2Raman-1λO2Raman-4-λN2Raman-4ebcRayl-1,
Δaer0.035×eb-0.3Δmol.
exp0R nO3rdr=PO2PN2R1/σN2-σO2×KN2KO2nN2nO2RβN2RamanβO2Raman1/σN2-σO2.
nH2OnN2R=PH2OPN2RKN2KH2OβN2RamanβH2ORaman×KN2KO2nN2nO2RβN2RamanβO2RamanσH2O-σN2/σN2-σO2×PO2PN2RσH2O-σN2/σN2-σO2
nH2OnN2=KcalPH2ORPN2RPO2RPN2RσH2O-σN2/σN2-σO2,
ΔO3=-σIGλN2-σIGλO2NIGσO3λN2-σO3λO2,

Metrics